These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 29511444)

  • 1. Functional peptides for cartilage repair and regeneration.
    Liu Q; Jia Z; Duan L; Xiong J; Wang D; Ding Y
    Am J Transl Res; 2018; 10(2):501-510. PubMed ID: 29511444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cartilage Tissue Regeneration: The Roles of Cells, Stimulating Factors and Scaffolds.
    Huang K; Li Q; Li Y; Yao Z; Luo D; Rao P; Xiao J
    Curr Stem Cell Res Ther; 2018; 13(7):547-567. PubMed ID: 28595567
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multipotential Role of Growth Factor Mimetic Peptides for Osteochondral Tissue Engineering.
    Rizzo MG; Palermo N; D'Amora U; Oddo S; Guglielmino SPP; Conoci S; Szychlinska MA; Calabrese G
    Int J Mol Sci; 2022 Jul; 23(13):. PubMed ID: 35806393
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Designer functionalised self-assembling peptide nanofibre scaffolds for cartilage tissue engineering.
    He B; Yuan X; Zhou A; Zhang H; Jiang D
    Expert Rev Mol Med; 2014 Aug; 16():e12. PubMed ID: 25089851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Treatment of osteochondral defects in the rabbit's knee joint by implantation of allogeneic mesenchymal stem cells in fibrin clots.
    Berninger MT; Wexel G; Rummeny EJ; Imhoff AB; Anton M; Henning TD; Vogt S
    J Vis Exp; 2013 May; (75):e4423. PubMed ID: 23728213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peptide-Based Materials for Cartilage Tissue Regeneration.
    Hastar N; Arslan E; Guler MO; Tekinay AB
    Adv Exp Med Biol; 2017; 1030():155-166. PubMed ID: 29081053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microenvironmentally optimized 3D-printed TGFβ-functionalized scaffolds facilitate endogenous cartilage regeneration in sheep.
    Yang Z; Cao F; Li H; He S; Zhao T; Deng H; Li J; Sun Z; Hao C; Xu J; Guo Q; Liu S; Guo W
    Acta Biomater; 2022 Sep; 150():181-198. PubMed ID: 35896136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Osteochondral Tissue Engineering Dilemma: Scaffolding Trends in Regenerative Medicine.
    Ramzan F; Salim A; Khan I
    Stem Cell Rev Rep; 2023 Aug; 19(6):1615-1634. PubMed ID: 37074547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advancements in tissue engineering for articular cartilage regeneration.
    Chen M; Jiang Z; Zou X; You X; Cai Z; Huang J
    Heliyon; 2024 Feb; 10(3):e25400. PubMed ID: 38352769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cryogenic 3D printing of heterogeneous scaffolds with gradient mechanical strengths and spatial delivery of osteogenic peptide/TGF-β1 for osteochondral tissue regeneration.
    Wang C; Yue H; Huang W; Lin X; Xie X; He Z; He X; Liu S; Bai L; Lu B; Wei Y; Wang M
    Biofabrication; 2020 Mar; 12(2):025030. PubMed ID: 32106097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Peptide-Based Hydrogel Scaffold Facilitates Articular Cartilage Damage Repair.
    Chen C; Wu D; Wang Z; Liu L; He J; Li J; Chu B; Wang S; Yu B; Liu W
    ACS Appl Mater Interfaces; 2024 Mar; 16(9):11336-11348. PubMed ID: 38407027
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scaffold-based Drug Delivery for Cartilage Tissue Regeneration.
    Shalumon KT; Chen JP
    Curr Pharm Des; 2015; 21(15):1979-90. PubMed ID: 25732662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Critical factors in the design of growth factor releasing scaffolds for cartilage tissue engineering.
    Sohier J; Moroni L; van Blitterswijk C; de Groot K; Bezemer JM
    Expert Opin Drug Deliv; 2008 May; 5(5):543-66. PubMed ID: 18491981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chondroinductive Peptides for Cartilage Regeneration.
    Ajeeb B; Acar H; Detamore MS
    Tissue Eng Part B Rev; 2022 Aug; 28(4):745-765. PubMed ID: 34375146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth Factor and Its Polymer Scaffold-Based Delivery System for Cartilage Tissue Engineering.
    Chen L; Liu J; Guan M; Zhou T; Duan X; Xiang Z
    Int J Nanomedicine; 2020; 15():6097-6111. PubMed ID: 32884266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A functional biphasic biomaterial homing mesenchymal stem cells for in vivo cartilage regeneration.
    Huang H; Zhang X; Hu X; Shao Z; Zhu J; Dai L; Man Z; Yuan L; Chen H; Zhou C; Ao Y
    Biomaterials; 2014 Dec; 35(36):9608-19. PubMed ID: 25176065
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioactive hydrogel scaffolds - advances in cartilage regeneration through controlled drug delivery.
    Censi R; Dubbini A; Matricardi P
    Curr Pharm Des; 2015; 21(12):1545-55. PubMed ID: 25594409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combinatory approach for developing silk fibroin scaffolds for cartilage regeneration.
    Ribeiro VP; da Silva Morais A; Maia FR; Canadas RF; Costa JB; Oliveira AL; Oliveira JM; Reis RL
    Acta Biomater; 2018 May; 72():167-181. PubMed ID: 29626700
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acceleration of chondrogenic differentiation of human mesenchymal stem cells by sustained growth factor release in 3D graphene oxide incorporated hydrogels.
    Shen H; Lin H; Sun AX; Song S; Wang B; Yang Y; Dai J; Tuan RS
    Acta Biomater; 2020 Mar; 105():44-55. PubMed ID: 32035282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D-Printed Porous Scaffolds of Hydrogels Modified with TGF-β1 Binding Peptides to Promote
    Ding X; Gao J; Yu X; Shi J; Chen J; Yu L; Chen S; Ding J
    ACS Appl Mater Interfaces; 2022 Apr; 14(14):15982-15995. PubMed ID: 35363484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.