These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 29511758)

  • 1. Engineering ellipsoidal cap-like hydrogel particles as building blocks or sacrificial templates for three-dimensional cell culture.
    Zhang W; Huang G; Ng K; Ji Y; Gao B; Huang L; Zhou J; Lu TJ; Xu F
    Biomater Sci; 2018 Mar; 6(4):885-892. PubMed ID: 29511758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Living nano-micro fibrous woven fabric/hydrogel composite scaffolds for heart valve engineering.
    Wu S; Duan B; Qin X; Butcher JT
    Acta Biomater; 2017 Mar; 51():89-100. PubMed ID: 28110071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Capillary Origami Inspired Fabrication of Complex 3D Hydrogel Constructs.
    Li M; Yang Q; Liu H; Qiu M; Lu TJ; Xu F
    Small; 2016 Sep; 12(33):4492-500. PubMed ID: 27418038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glucose-sensitive self-healing hydrogel as sacrificial materials to fabricate vascularized constructs.
    Tseng TC; Hsieh FY; Theato P; Wei Y; Hsu SH
    Biomaterials; 2017 Jul; 133():20-28. PubMed ID: 28414976
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Injectable methylcellulose hydrogel containing calcium phosphate nanoparticles for bone regeneration.
    Kim MH; Kim BS; Park H; Lee J; Park WH
    Int J Biol Macromol; 2018 Apr; 109():57-64. PubMed ID: 29246871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrospun thermosensitive hydrogel scaffold for enhanced chondrogenesis of human mesenchymal stem cells.
    Brunelle AR; Horner CB; Low K; Ico G; Nam J
    Acta Biomater; 2018 Jan; 66():166-176. PubMed ID: 29128540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vascular-like network prepared using hollow hydrogel microfibers.
    Takei T; Kitazono Z; Ozuno Y; Yoshinaga T; Nishimata H; Yoshida M
    J Biosci Bioeng; 2016 Mar; 121(3):336-40. PubMed ID: 26199226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vessel-like channels supported by poly-l-lysine tubes.
    Mori N; Morimoto Y; Takeuchi S
    J Biosci Bioeng; 2016 Dec; 122(6):753-757. PubMed ID: 27323931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Macroporous Hydrogel Scaffolds for Three-Dimensional Cell Culture and Tissue Engineering.
    Fan C; Wang DA
    Tissue Eng Part B Rev; 2017 Oct; 23(5):451-461. PubMed ID: 28067115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biocompatibility of hydrogel-based scaffolds for tissue engineering applications.
    Naahidi S; Jafari M; Logan M; Wang Y; Yuan Y; Bae H; Dixon B; Chen P
    Biotechnol Adv; 2017 Sep; 35(5):530-544. PubMed ID: 28558979
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visible light induced electropolymerization of suspended hydrogel bioscaffolds in a microfluidic chip.
    Li P; Yu H; Liu N; Wang F; Lee GB; Wang Y; Liu L; Li WJ
    Biomater Sci; 2018 May; 6(6):1371-1378. PubMed ID: 29790875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellulose hydrogel with tunable shape and mechanical properties: From rigid cylinder to soft scaffold.
    Isobe N; Komamiya T; Kimura S; Kim UJ; Wada M
    Int J Biol Macromol; 2018 Oct; 117():625-631. PubMed ID: 29778880
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Layer by layer three-dimensional tissue epitaxy by cell-laden hydrogel droplets.
    Moon S; Hasan SK; Song YS; Xu F; Keles HO; Manzur F; Mikkilineni S; Hong JW; Nagatomi J; Haeggstrom E; Khademhosseini A; Demirci U
    Tissue Eng Part C Methods; 2010 Feb; 16(1):157-66. PubMed ID: 19586367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybrid 3D printing and electrodeposition approach for controllable 3D alginate hydrogel formation.
    Shang W; Liu Y; Wan W; Hu C; Liu Z; Wong CT; Fukuda T; Shen Y
    Biofabrication; 2017 Jun; 9(2):025032. PubMed ID: 28436920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell specificity of magnetic cell seeding approach to hydrogel colonization.
    Singh R; Wieser A; Reakasame S; Detsch R; Dietel B; Alexiou C; Boccaccini AR; Cicha I
    J Biomed Mater Res A; 2017 Nov; 105(11):2948-2957. PubMed ID: 28639348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A simple model for the perfusion of porous hydrogel scaffolds under culture in a sustentation like bioreactor.
    Knapp Y; Deplano V; Bertrand E
    Comput Methods Biomech Biomed Engin; 2013; 16 Suppl 1():268-9. PubMed ID: 23923937
    [No Abstract]   [Full Text] [Related]  

  • 17. A biomimetic hydrogel functionalized with adipose ECM components as a microenvironment for the 3D culture of human and murine adipocytes.
    Louis F; Pannetier P; Souguir Z; Le Cerf D; Valet P; Vannier JP; Vidal G; Demange E
    Biotechnol Bioeng; 2017 Aug; 114(8):1813-1824. PubMed ID: 28398656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioprinting Using Mechanically Robust Core-Shell Cell-Laden Hydrogel Strands.
    Mistry P; Aied A; Alexander M; Shakesheff K; Bennett A; Yang J
    Macromol Biosci; 2017 Jun; 17(6):. PubMed ID: 28160431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Double-Network Hydrogel with Tunable Mechanical Performance and Biocompatibility for the Fabrication of Stem Cells-Encapsulated Fibers and 3D Assemble.
    Liang Z; Liu C; Li L; Xu P; Luo G; Ding M; Liang Q
    Sci Rep; 2016 Sep; 6():33462. PubMed ID: 27628933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Applying macromolecular crowding to 3D bioprinting: fabrication of 3D hierarchical porous collagen-based hydrogel constructs.
    Ng WL; Goh MH; Yeong WY; Naing MW
    Biomater Sci; 2018 Feb; 6(3):562-574. PubMed ID: 29383354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.