These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 29511788)
21. Exposure of Brassica juncea (L) to arsenic species in hydroponic medium: comparative analysis in accumulation and biochemical and transcriptional alterations. Ahmad MA; Gupta M Environ Sci Pollut Res Int; 2013 Nov; 20(11):8141-50. PubMed ID: 23900946 [TBL] [Abstract][Full Text] [Related]
22. Phytoremediation of Cr(VI) by Spirodela polyrrhiza (L.) Schleiden employing reducing and chelating agents. Bala R; Thukral AK Int J Phytoremediation; 2011; 13(5):465-91. PubMed ID: 21598777 [TBL] [Abstract][Full Text] [Related]
23. Zinc supplementation imparts tolerance to arsenite stress in Hydrilla verticillata (L.f.) Royle. Srivastava S; Shrivastava M Int J Phytoremediation; 2017 Apr; 19(4):353-359. PubMed ID: 27594374 [TBL] [Abstract][Full Text] [Related]
24. Subcellular accumulation and source of O Zhuang K; Shi D; Hu Z; Xu F; Chen Y; Shen Z Aquat Toxicol; 2019 Feb; 207():1-12. PubMed ID: 30500560 [TBL] [Abstract][Full Text] [Related]
25. Investigation of uranium accumulation potential and biochemical responses of an aquatic weed Hydrilla verticillata (L.f.) Royle. Srivastava S; Bhainsa KC; D'Souza SF Bioresour Technol; 2010 Apr; 101(8):2573-9. PubMed ID: 19939677 [TBL] [Abstract][Full Text] [Related]
26. Oxidative stress response of the aquatic macrophyte Hydrilla verticillata exposed to TiO Okupnik A; Pflugmacher S Environ Toxicol Chem; 2016 Nov; 35(11):2859-2866. PubMed ID: 27128384 [TBL] [Abstract][Full Text] [Related]
27. Search for a plant for phytoremediation--what can we learn from field and hydroponic studies? Zabłudowska E; Kowalska J; Jedynak L; Wojas S; Skłodowska A; Antosiewicz DM Chemosphere; 2009 Oct; 77(3):301-7. PubMed ID: 19733893 [TBL] [Abstract][Full Text] [Related]
28. Antioxidative responses to arsenic in the arsenic-hyperaccumulator Chinese brake fern (Pteris vittata L.). Cao X; Ma LQ; Tu C Environ Pollut; 2004; 128(3):317-25. PubMed ID: 14720474 [TBL] [Abstract][Full Text] [Related]
29. Effects of indole-3-acetic acid on arsenic uptake and antioxidative enzymes in Pteris cretica var. nervosa and Pteris ensiformis. He S; Hu Y; Wang H; Wang H; Li Q Int J Phytoremediation; 2017 Mar; 19(3):231-238. PubMed ID: 27419850 [TBL] [Abstract][Full Text] [Related]
30. Arsenic accumulation pattern in 12 Indian ferns and assessing the potential of Adiantum capillus-veneris, in comparison to Pteris vittata, as arsenic hyperaccumulator. Singh N; Raj A; Khare PB; Tripathi RD; Jamil S Bioresour Technol; 2010 Dec; 101(23):8960-8. PubMed ID: 20655204 [TBL] [Abstract][Full Text] [Related]
31. Time-dependent changes of arsenic and its selected forms in a hydroponic experiment with Quercus robur L. Budzyńska S; Niedzielski P; Mleczek M J Hazard Mater; 2021 Mar; 405():124244. PubMed ID: 33082017 [TBL] [Abstract][Full Text] [Related]
32. The role of submerged macrophytes in phytoremediation of arsenic from contaminated water: A case study on Vallisneria natans (Lour.) Hara. Li B; Gu B; Yang Z; Zhang T Ecotoxicol Environ Saf; 2018 Dec; 165():224-231. PubMed ID: 30199793 [TBL] [Abstract][Full Text] [Related]
33. [Physiological Effect of Vallisneria natans Under Different Concentrations of Nitrogen, Phosphorus and Chloramphenicol]. Hu ZZ; Cui YB; Li M; Yu J Huan Jing Ke Xue; 2015 Sep; 36(9):3248-54. PubMed ID: 26717684 [TBL] [Abstract][Full Text] [Related]
34. [Arsenic accumulation by submerged plants: a review]. Ran Y; Chen G Sheng Wu Gong Cheng Xue Bao; 2020 Mar; 36(3):407-415. PubMed ID: 32237535 [TBL] [Abstract][Full Text] [Related]
35. Effects of cultivation conditions on the uptake of arsenite and arsenic chemical species accumulated by Pteris vittata in hydroponics. Hatayama M; Sato T; Shinoda K; Inoue C J Biosci Bioeng; 2011 Mar; 111(3):326-32. PubMed ID: 21185228 [TBL] [Abstract][Full Text] [Related]
36. Response of biofilms-leaves of two submerged macrophytes to high ammonium. Gong L; Zhang S; Chen D; Liu K; Lu J Chemosphere; 2018 Feb; 192():152-160. PubMed ID: 29101854 [TBL] [Abstract][Full Text] [Related]
37. Arsenic tolerances in rice (Oryza sativa) have a predominant role in transcriptional regulation of a set of genes including sulphur assimilation pathway and antioxidant system. Rai A; Tripathi P; Dwivedi S; Dubey S; Shri M; Kumar S; Tripathi PK; Dave R; Kumar A; Singh R; Adhikari B; Bag M; Tripathi RD; Trivedi PK; Chakrabarty D; Tuli R Chemosphere; 2011 Feb; 82(7):986-95. PubMed ID: 21075415 [TBL] [Abstract][Full Text] [Related]
38. Arsenate and arsenite exposure modulate antioxidants and amino acids in contrasting arsenic accumulating rice (Oryza sativa L.) genotypes. Dave R; Tripathi RD; Dwivedi S; Tripathi P; Dixit G; Sharma YK; Trivedi PK; Corpas FJ; Barroso JB; Chakrabarty D J Hazard Mater; 2013 Nov; 262():1123-31. PubMed ID: 22917495 [TBL] [Abstract][Full Text] [Related]
39. Assimilation and physiological effects of ferrocyanide on weeping willows. Yu XZ; Gu JD; Li L Ecotoxicol Environ Saf; 2008 Nov; 71(3):609-15. PubMed ID: 18614232 [TBL] [Abstract][Full Text] [Related]
40. Effects of exogenous manganese on its plant growth, subcellular distribution, chemical forms, physiological and biochemical traits in Cleome viscosa L. Xiao Z; Pan G; Li X; Kuang X; Wang W; Liu W Ecotoxicol Environ Saf; 2020 Jul; 198():110696. PubMed ID: 32380306 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]