These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 29512215)

  • 21. The effect of nanometre-scale V-pits on electronic and optical properties and efficiency droop of GaN-based green light-emitting diodes.
    Zhou S; Liu X; Yan H; Gao Y; Xu H; Zhao J; Quan Z; Gui C; Liu S
    Sci Rep; 2018 Jul; 8(1):11053. PubMed ID: 30038360
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dependence of InGaN Quantum Well Thickness on the Nature of Optical Transitions in LEDs.
    Hajdel M; Chlipała M; Siekacz M; Turski H; Wolny P; Nowakowski-Szkudlarek K; Feduniewicz-Żmuda A; Skierbiszewski C; Muziol G
    Materials (Basel); 2021 Dec; 15(1):. PubMed ID: 35009382
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Surface-plasmon-enhanced light emitters based on InGaN quantum wells.
    Okamoto K; Niki I; Shvartser A; Narukawa Y; Mukai T; Scherer A
    Nat Mater; 2004 Sep; 3(9):601-5. PubMed ID: 15322535
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fabrication of surface metal nanoparticles and their induced surface plasmon coupling with subsurface InGaN/GaN quantum wells.
    Huang CW; Tseng HY; Chen CY; Liao CH; Hsieh C; Chen KY; Lin HY; Chen HS; Jung YL; Kiang YW; Yang CC
    Nanotechnology; 2011 Nov; 22(47):475201. PubMed ID: 22049151
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhanced Luminescence Performance of Quantum Wells by Coupling Piezo-Phototronic with Plasmonic Effects.
    Huang X; Jiang C; Du C; Jing L; Liu M; Hu W; Wang ZL
    ACS Nano; 2016 Dec; 10(12):11420-11427. PubMed ID: 28024322
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhancing carrier transport and carrier capture with a good current spreading characteristic via graphene transparent conductive electrodes in InGaN/GaN multiple-quantum-well light emitting diodes.
    Feng SW; Wang YH; Tsai CY; Cheng TH; Wang HC
    Sci Rep; 2020 Jun; 10(1):10539. PubMed ID: 32601415
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dynamic control of spontaneous emission rate using tunable hyperbolic metamaterials.
    Chamoli SK; ElKabbash M; Zhang J; Guo C
    Opt Lett; 2020 Apr; 45(7):1671-1674. PubMed ID: 32235970
    [TBL] [Abstract][Full Text] [Related]  

  • 28. GaN-based photon-recycling green light-emitting diodes with vertical-conduction structure.
    Sheu JK; Chen FB; Yen WY; Wang YC; Liu CN; Yeh YH; Lee ML
    Opt Express; 2015 Apr; 23(7):A371-81. PubMed ID: 25968802
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Investigation of InGaN green light-emitting diodes with chirped multiple quantum well structures.
    Chang YA; Kuo YT; Chang JY; Kuo YK
    Opt Lett; 2012 Jun; 37(12):2205-7. PubMed ID: 22739856
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhancement of the modulation bandwidth for GaN-based light-emitting diode by surface plasmons.
    Zhu SC; Yu ZG; Zhao LX; Wang JX; Li JM
    Opt Express; 2015 Jun; 23(11):13752-60. PubMed ID: 26072747
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optical properties of plasmonic light-emitting diodes based on flip-chip III-nitride core-shell nanowires.
    Nami M; Feezell DF
    Opt Express; 2014 Dec; 22(24):29445-55. PubMed ID: 25606879
    [TBL] [Abstract][Full Text] [Related]  

  • 32. GaN-based ultraviolet light-emitting diodes with AlN/GaN/InGaN multiple quantum wells.
    Chang HM; Lai WC; Chen WS; Chang SJ
    Opt Express; 2015 Apr; 23(7):A337-45. PubMed ID: 25968799
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Factors Affecting Surface Plasmon Coupling of Quantum Wells in Nitride-Based LEDs: A Review of the Recent Advances.
    Saleem MF; Peng Y; Xiao K; Yao H; Wang Y; Sun W
    Nanomaterials (Basel); 2021 Apr; 11(5):. PubMed ID: 33925717
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High brightness and broad modulation bandwidth InGaN-based red micro-LEDs integrated with plasmonic gratings.
    Zhang G; Zhang L; Ren FF; Li Y; Wang Y
    Opt Lett; 2022 Nov; 47(21):5485-5488. PubMed ID: 37219250
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Flower-Like Internal Emission Distribution of LEDs with Monolithic Integration of InGaN-based Quantum Wells Emitting Narrow Blue, Green, and Red Spectra.
    Lee K; Choi I; Lee CR; Chung TH; Kim YS; Jeong KU; Chung DC; Kim JS
    Sci Rep; 2017 Aug; 7(1):7164. PubMed ID: 28769103
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ultrafast and low power all-optical switching in the mid-infrared region based on nonlinear highly doped semiconductor hyperbolic metamaterials.
    Azmoudeh E; Farazi S
    Opt Express; 2021 Apr; 29(9):13504-13517. PubMed ID: 33985082
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High-performance flat-type InGaN-based light-emitting diodes with local breakdown conductive channel.
    Baek SH; Lee HJ; Lee SN
    Sci Rep; 2019 Sep; 9(1):13654. PubMed ID: 31541127
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improved efficiency of InGaN/GaN light-emitting diodes with perpendicular magnetic field gradients.
    Han JH; Kim JJ; Leem YC; Kim SJ; Kwak W; Jeong WL; Cho B; Lee DS; Park SJ
    Opt Express; 2019 Dec; 27(25):36708-36716. PubMed ID: 31873444
    [TBL] [Abstract][Full Text] [Related]  

  • 39. InGaN micro-light-emitting diodes monolithically grown on Si: achieving ultra-stable operation through polarization and strain engineering.
    Wu Y; Xiao Y; Navid I; Sun K; Malhotra Y; Wang P; Wang D; Xu Y; Pandey A; Reddeppa M; Shin W; Liu J; Min J; Mi Z
    Light Sci Appl; 2022 Oct; 11(1):294. PubMed ID: 36216825
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhanced spontaneous emission inside hyperbolic metamaterials.
    Ferrari L; Lu D; Lepage D; Liu Z
    Opt Express; 2014 Feb; 22(4):4301-6. PubMed ID: 24663753
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.