These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 29512390)

  • 1. Role of Zinc and Magnesium Ions in the Modulation of Phosphoryl Transfer in Protein Tyrosine Phosphatase 1B.
    Bellomo E; Abro A; Hogstrand C; Maret W; Domene C
    J Am Chem Soc; 2018 Mar; 140(12):4446-4454. PubMed ID: 29512390
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The metal face of protein tyrosine phosphatase 1B.
    Bellomo E; Birla Singh K; Massarotti A; Hogstrand C; Maret W
    Coord Chem Rev; 2016 Nov; 327-328():70-83. PubMed ID: 27890939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The interactions of metal cations and oxyanions with protein tyrosine phosphatase 1B.
    Singh KB; Maret W
    Biometals; 2017 Aug; 30(4):517-527. PubMed ID: 28540523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of protonation state of Asp181 and position of active site water molecules on the conformation of PTP1B.
    Ozcan A; Olmez EO; Alakent B
    Proteins; 2013 May; 81(5):788-804. PubMed ID: 23239271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and mechanism of alkaline phosphatase.
    Coleman JE
    Annu Rev Biophys Biomol Struct; 1992; 21():441-83. PubMed ID: 1525473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of phosphocaveolin-1 as a novel protein tyrosine phosphatase 1B substrate.
    Lee H; Xie L; Luo Y; Lee SY; Lawrence DS; Wang XB; Sotgia F; Lisanti MP; Zhang ZY
    Biochemistry; 2006 Jan; 45(1):234-40. PubMed ID: 16388599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Zinc ions modulate protein tyrosine phosphatase 1B activity.
    Bellomo E; Massarotti A; Hogstrand C; Maret W
    Metallomics; 2014 Jul; 6(7):1229-39. PubMed ID: 24793162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coordination number of zinc ions in the phosphotriesterase active site by molecular dynamics and quantum mechanics.
    Koca J; Zhan CG; Rittenhouse RC; Ornstein RL
    J Comput Chem; 2003 Feb; 24(3):368-78. PubMed ID: 12548728
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water-molecule network and active-site flexibility of apo protein tyrosine phosphatase 1B.
    Pedersen AK; Peters G Gü; Møller KB; Iversen LF; Kastrup JS
    Acta Crystallogr D Biol Crystallogr; 2004 Sep; 60(Pt 9):1527-34. PubMed ID: 15333922
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational modeling of the catalytic mechanism of human placental alkaline phosphatase (PLAP).
    Borosky GL; Lin S
    J Chem Inf Model; 2011 Oct; 51(10):2538-48. PubMed ID: 21939286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lewis acid properties of zinc(II) in Its cyclen complex. The structure of [Zn(cyclen)(S=C(NH2)2](ClO4)2 and the bonding of thiourea to metal ions. Some implications for zinc metalloenzymes.
    Salter MH; Reibenspies JH; Jones SB; Hancock RD
    Inorg Chem; 2005 Apr; 44(8):2791-7. PubMed ID: 15819567
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal-substrate interactions facilitate the catalytic activity of the bacterial phosphotriesterase.
    Hong SB; Raushel FM
    Biochemistry; 1996 Aug; 35(33):10904-12. PubMed ID: 8718883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Residue 259 in protein-tyrosine phosphatase PTP1B and PTPalpha determines the flexibility of glutamine 262.
    Peters GH; Iversen LF; Andersen HS; Møller NP; Olsen OH
    Biochemistry; 2004 Jul; 43(26):8418-28. PubMed ID: 15222753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tyrosine phosphatases as targets in metal-induced signaling in human airway epithelial cells.
    Samet JM; Silbajoris R; Wu W; Graves LM
    Am J Respir Cell Mol Biol; 1999 Sep; 21(3):357-64. PubMed ID: 10460753
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical models of catalytic domains of protein phosphatases 1 and 2A with Zn2+ and Mn2+ metal dications and putative bioligands in their catalytic centers.
    Woźniak-Celmer E; Ołdziej S; Ciarkowski J
    Acta Biochim Pol; 2001; 48(1):35-52. PubMed ID: 11440182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of metal-ion replacement on pyrazinamidase activity: A quantum mechanical study.
    Khadem-Maaref M; Mehrnejad F; Phirouznia A
    J Mol Graph Model; 2017 May; 73():24-29. PubMed ID: 28214629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies of the mechanism of selectivity of protein tyrosine phosphatase 1B (PTP1B) bidentate inhibitors using molecular dynamics simulations and free energy calculations.
    Fang L; Zhang H; Cui W; Ji M
    J Chem Inf Model; 2008 Oct; 48(10):2030-41. PubMed ID: 18831546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redox and zinc signalling pathways converging on protein tyrosine phosphatases.
    Bellomo E; Hogstrand C; Maret W
    Free Radic Biol Med; 2014 Oct; 75 Suppl 1():S9. PubMed ID: 26461422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redox regulation of protein tyrosine phosphatase 1B involves a sulphenyl-amide intermediate.
    Salmeen A; Andersen JN; Myers MP; Meng TC; Hinks JA; Tonks NK; Barford D
    Nature; 2003 Jun; 423(6941):769-73. PubMed ID: 12802338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differentiation of the slow-binding mechanism for magnesium ion activation and zinc ion inhibition of human placental alkaline phosphatase.
    Hung HC; Chang GG
    Protein Sci; 2001 Jan; 10(1):34-45. PubMed ID: 11266592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.