These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

377 related articles for article (PubMed ID: 29512494)

  • 1. A novel fuzzy rough selection of non-linearly extracted features for schizophrenia diagnosis using fMRI.
    Juneja A; Rana B; Agrawal RK
    Comput Methods Programs Biomed; 2018 Mar; 155():139-152. PubMed ID: 29512494
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel event-related fMRI supervoxels-based representation and its application to schizophrenia diagnosis.
    Cruz-Martinez C; Reyes-Garcia CA; Vanello N
    Comput Methods Programs Biomed; 2022 Jan; 213():106509. PubMed ID: 34800805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brain tissue segmentation using improved kernelized rough-fuzzy C-means with spatio-contextual information from MRI.
    Halder A; Talukdar NA
    Magn Reson Imaging; 2019 Oct; 62():129-151. PubMed ID: 31247252
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discriminative analysis of resting-state functional connectivity patterns of schizophrenia using low dimensional embedding of fMRI.
    Shen H; Wang L; Liu Y; Hu D
    Neuroimage; 2010 Feb; 49(4):3110-21. PubMed ID: 19931396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-negative discriminative brain functional connectivity for identifying schizophrenia on resting-state fMRI.
    Zhu Q; Huang J; Xu X
    Biomed Eng Online; 2018 Mar; 17(1):32. PubMed ID: 29534759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A multiple kernel learning approach to perform classification of groups from complex-valued fMRI data analysis: application to schizophrenia.
    Castro E; Gómez-Verdejo V; Martínez-Ramón M; Kiehl KA; Calhoun VD
    Neuroimage; 2014 Feb; 87():1-17. PubMed ID: 24225489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic thresholding networks for schizophrenia diagnosis.
    Zou H; Yang J
    Artif Intell Med; 2019 May; 96():25-32. PubMed ID: 31164208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A fuzzy integral method based on the ensemble of neural networks to analyze fMRI data for cognitive state classification across multiple subjects.
    Cacha LA; Parida S; Dehuri S; Cho SB; Poznanski RR
    J Integr Neurosci; 2016 Dec; 15(4):593-606. PubMed ID: 28093025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generalized rough fuzzy c-means algorithm for brain MR image segmentation.
    Ji Z; Sun Q; Xia Y; Chen Q; Xia D; Feng D
    Comput Methods Programs Biomed; 2012 Nov; 108(2):644-55. PubMed ID: 22088865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Classification of autistic individuals and controls using cross-task characterization of fMRI activity.
    Chanel G; Pichon S; Conty L; Berthoz S; Chevallier C; Grèzes J
    Neuroimage Clin; 2016; 10():78-88. PubMed ID: 26793434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatially regularized machine learning for task and resting-state fMRI.
    Song X; Panych LP; Chen NK
    J Neurosci Methods; 2016 Jan; 257():214-28. PubMed ID: 26470627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resting-State Functional Network Scale Effects and Statistical Significance-Based Feature Selection in Machine Learning Classification.
    Guo H; Li Y; Mensah GK; Xu Y; Chen J; Xiang J; Chen D
    Comput Math Methods Med; 2019; 2019():9108108. PubMed ID: 31781290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discriminant analysis of functional connectivity patterns on Grassmann manifold.
    Fan Y; Liu Y; Wu H; Hao Y; Liu H; Liu Z; Jiang T
    Neuroimage; 2011 Jun; 56(4):2058-67. PubMed ID: 21440643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel method and software for automatically classifying Alzheimer's disease patients by magnetic resonance imaging analysis.
    Previtali F; Bertolazzi P; Felici G; Weitschek E
    Comput Methods Programs Biomed; 2017 May; 143():89-95. PubMed ID: 28391822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identifying patients with Alzheimer's disease using resting-state fMRI and graph theory.
    Khazaee A; Ebrahimzadeh A; Babajani-Feremi A
    Clin Neurophysiol; 2015 Nov; 126(11):2132-41. PubMed ID: 25907414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multilevel analysis of spatiotemporal association features for differentiation of tumor enhancement patterns in breast DCE-MRI.
    Lee SH; Kim JH; Cho N; Park JS; Yang Z; Jung YS; Moon WK
    Med Phys; 2010 Aug; 37(8):3940-56. PubMed ID: 20879557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A general prediction model for the detection of ADHD and Autism using structural and functional MRI.
    Sen B; Borle NC; Greiner R; Brown MRG
    PLoS One; 2018; 13(4):e0194856. PubMed ID: 29664902
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resting State Effective Connectivity Allows Auditory Hallucination Discrimination.
    Graña M; Ozaeta L; Chyzhyk D
    Int J Neural Syst; 2017 Aug; 27(5):1750019. PubMed ID: 28274168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissecting cognitive stages with time-resolved fMRI data: a comparison of fuzzy clustering and independent component analysis.
    Smolders A; De Martino F; Staeren N; Scheunders P; Sijbers J; Goebel R; Formisano E
    Magn Reson Imaging; 2007 Jul; 25(6):860-8. PubMed ID: 17482412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Successful classification of cocaine dependence using brain imaging: a generalizable machine learning approach.
    Mete M; Sakoglu U; Spence JS; Devous MD; Harris TS; Adinoff B
    BMC Bioinformatics; 2016 Oct; 17(Suppl 13):357. PubMed ID: 27766943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.