BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

666 related articles for article (PubMed ID: 29512503)

  • 1. Improved binary dragonfly optimization algorithm and wavelet packet based non-linear features for infant cry classification.
    Hariharan M; Sindhu R; Vijean V; Yazid H; Nadarajaw T; Yaacob S; Polat K
    Comput Methods Programs Biomed; 2018 Mar; 155():39-51. PubMed ID: 29512503
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimal selection of mother wavelet for accurate infant cry classification.
    Saraswathy J; Hariharan M; Nadarajaw T; Khairunizam W; Yaacob S
    Australas Phys Eng Sci Med; 2014 Jun; 37(2):439-56. PubMed ID: 24691930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Normal and hypoacoustic infant cry signal classification using time-frequency analysis and general regression neural network.
    Hariharan M; Sindhu R; Yaacob S
    Comput Methods Programs Biomed; 2012 Nov; 108(2):559-69. PubMed ID: 21824676
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of infant cry through weighted linear prediction cepstral coefficients and Probabilistic Neural Network.
    Hariharan M; Chee LS; Yaacob S
    J Med Syst; 2012 Jun; 36(3):1309-15. PubMed ID: 20844933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Empirical Wavelet Transform Based Features for Classification of Parkinson's Disease Severity.
    Oung QW; Muthusamy H; Basah SN; Lee H; Vijean V
    J Med Syst; 2017 Dec; 42(2):29. PubMed ID: 29288342
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Multistage Heterogeneous Stacking Ensemble Model for Augmented Infant Cry Classification.
    Joshi VR; Srinivasan K; Vincent PMDR; Rajinikanth V; Chang CY
    Front Public Health; 2022; 10():819865. PubMed ID: 35400062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expiratory and Inspiratory Cries Detection Using Different Signals' Decomposition Techniques.
    Abou-Abbas L; Tadj C; Gargour C; Montazeri L
    J Voice; 2017 Mar; 31(2):259.e13-259.e28. PubMed ID: 27567394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lung sound classification using cepstral-based statistical features.
    Sengupta N; Sahidullah M; Saha G
    Comput Biol Med; 2016 Aug; 75():118-29. PubMed ID: 27286184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cumulant-based trapezoidal basis selection for heart sound classification.
    Safara F
    Med Biol Eng Comput; 2015 Nov; 53(11):1153-64. PubMed ID: 26403300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep Learning Assisted Neonatal Cry Classification
    K A; Vincent PMDR; Srinivasan K; Chang CY
    Front Public Health; 2021; 9():670352. PubMed ID: 34178926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of Pattern Recognition Techniques to the Classification of Full-Term and Preterm Infant Cry.
    Orlandi S; Reyes Garcia CA; Bandini A; Donzelli G; Manfredi C
    J Voice; 2016 Nov; 30(6):656-663. PubMed ID: 26474712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Drug discrimination by near infrared spectroscopy based on summation wavelet extreme learning machine].
    Liu ZB; Jiang SJ; Yang HH; Zhang XB
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Oct; 34(10):2815-20. PubMed ID: 25739231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Defining and distinguishing infant behavioral states using acoustic cry analysis: is colic painful?
    Parga JJ; Lewin S; Lewis J; Montoya-Williams D; Alwan A; Shaul B; Han C; Bookheimer SY; Eyer S; Dapretto M; Zeltzer L; Dunlap L; Nookala U; Sun D; Dang BH; Anderson AE
    Pediatr Res; 2020 Feb; 87(3):576-580. PubMed ID: 31585457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acoustic emission corrosion feature extraction and severity prediction using hybrid wavelet packet transform and linear support vector classifier.
    May Z; Alam MK; Nayan NA; Rahman NAA; Mahmud MS
    PLoS One; 2021; 16(12):e0261040. PubMed ID: 34914761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Classification of myocardial infarction based on hybrid feature extraction and artificial intelligence tools by adopting tunable-Q wavelet transform (TQWT), variational mode decomposition (VMD) and neural networks.
    Zeng W; Yuan J; Yuan C; Wang Q; Liu F; Wang Y
    Artif Intell Med; 2020 Jun; 106():101848. PubMed ID: 32593387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Entropy-based feature extraction technique in conjunction with wavelet packet transform for multi-mental task classification.
    Uyulan C; Ergüzel TT; Tarhan N
    Biomed Tech (Berl); 2019 Sep; 64(5):529-542. PubMed ID: 30849042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [A Classification Algorithm for Epileptic Electroencephalogram Based on Wavelet Multiscale Analysis and Extreme Learning Machine].
    Cui G; Xia L; Liang J; Tu M
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2016 Dec; 33(6):1025-30. PubMed ID: 29714962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Tunable-Q wavelet transform and quadruple symmetric pattern based EEG signal classification method.
    Aydemir E; Tuncer T; Dogan S
    Med Hypotheses; 2020 Jan; 134():109519. PubMed ID: 31877443
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arrhythmia Classification Based on Multi-Domain Feature Extraction for an ECG Recognition System.
    Li H; Yuan D; Wang Y; Cui D; Cao L
    Sensors (Basel); 2016 Oct; 16(10):. PubMed ID: 27775596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Particle swarm optimization based feature enhancement and feature selection for improved emotion recognition in speech and glottal signals.
    Muthusamy H; Polat K; Yaacob S
    PLoS One; 2015; 10(3):e0120344. PubMed ID: 25799141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.