BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 2951253)

  • 1. Metabolic utilization of 57Fe-labeled coprogen in Neurospora crassa. An in vivo Mössbauer study.
    Matzanke BF; Bill E; Müller GI; Trautwein AX; Winkelmann G
    Eur J Biochem; 1987 Feb; 162(3):643-50. PubMed ID: 2951253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ferricrocin functions as the main intracellular iron-storage compound in mycelia of Neurospora crassa.
    Matzanke BF; Bill E; Trautwein AX; Winkelmann G
    Biol Met; 1988; 1(1):18-25. PubMed ID: 2978956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for a common siderophore transport system but different siderophore receptors in Neurospora crassa.
    Huschka H; Naegeli HU; Leuenberger-Ryf H; Keller-Schierlein W; Winkelmann G
    J Bacteriol; 1985 May; 162(2):715-21. PubMed ID: 2985545
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibitory effect of the partially resolved coordination isomers of chromic desferricoprogen on coprogen uptake in Neurospora crassa.
    Chung TD; Matzanke BF; Winkelmann G; Raymond KN
    J Bacteriol; 1986 Jan; 165(1):283-7. PubMed ID: 2934378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of siderophores in iron storage in spores of Neurospora crassa and Aspergillus ochraceus.
    Matzanke BF; Bill E; Trautwein AX; Winkelmann G
    J Bacteriol; 1987 Dec; 169(12):5873-6. PubMed ID: 2960664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iron limitation and its effect on membrane proteins and siderophore transport in Neurospora crassa.
    Huschka HG; Winkelmann G
    Biol Met; 1989; 2(2):108-13. PubMed ID: 2534965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic products of microorganisms. 135. Uptake of iron by Neurospora crassa. IV. Iron transport properties of semisynthetic coprogen derivatives.
    Ernst J; Winkelmann G
    Arch Microbiol; 1974; 100(3):271-82. PubMed ID: 4281294
    [No Abstract]   [Full Text] [Related]  

  • 8. [Metabolic products of microorganisms. 115. Uptake of iron by Neurospora crassa. I. To the specificity of iron transport].
    Winkelmann G; Zähner H
    Arch Mikrobiol; 1973; 88(1):49-60. PubMed ID: 4265135
    [No Abstract]   [Full Text] [Related]  

  • 9. Optimization of coprogen production in Neurospora crassa.
    Tóth V; Antal K; Gyémánt G; Miskei M; Pócsi I; Emri T
    Acta Biol Hung; 2009 Sep; 60(3):321-8. PubMed ID: 19700391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular recognition of siderophores in fungi: role of iron-surrounding N-acyl residues and the peptide backbone during membrane transport in Neurospora crassa.
    Huschka HG; Jalal MA; van der Helm D; Winkelmann G
    J Bacteriol; 1986 Sep; 167(3):1020-4. PubMed ID: 2943724
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellular and extracellular siderophores of Aspergillus nidulans and Penicillium chrysogenum.
    Charlang G; Ng B; Horowitz NH; Horowitz RM
    Mol Cell Biol; 1981 Feb; 1(2):94-100. PubMed ID: 6242827
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Metabolic products of microorganisms. 120. Uptake of iron by Neurospora crassa. II. Regulation of the biosynthesis of sideramines and inhibition of iron transport by metal analogues of coprogen (author's transl)].
    Winkelmann G; Barnekow A; Ilgner D; Zähner H
    Arch Mikrobiol; 1973; 92(4):285-300. PubMed ID: 4272844
    [No Abstract]   [Full Text] [Related]  

  • 13. Fusarinines and dimerum acid, mono- and dihydroxamate siderophores from Penicillium chrysogenum, improve iron utilization by strategy I and strategy II plants.
    Hördt W; Römheld V; Winkelmann G
    Biometals; 2000 Mar; 13(1):37-46. PubMed ID: 10831223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Siderophore mediated iron(III) uptake in Gliocladium virens. 2. Role of ferric mono- and dihydroxamates as iron transport agents.
    Jalal MA; Love SK; van der Helm D
    J Inorg Biochem; 1987 Apr; 29(4):259-67. PubMed ID: 2953864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymatic release of iron from sideramines in fungi. NADH:sideramine oxidoreductase in Neurospora crassa.
    Ernst JF; Winkelmann G
    Biochim Biophys Acta; 1977 Nov; 500(1):27-41. PubMed ID: 144535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chiral linear hydroxamates as biomimetic analogues of ferrioxamine and coprogen and their use in probing siderophore-receptor specificity in bacteria and fungi.
    Berner I; Yakirevitch P; Libman J; Shanzer A; Winkelmann G
    Biol Met; 1991; 4(3):186-91. PubMed ID: 1657086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards high-siderophore-content foods: optimisation of coprogen production in submerged cultures of Penicillium nalgiovense.
    Emri T; Tóth V; Nagy CT; Nagy G; Pócsi I; Gyémánt G; Antal K; Balla J; Balla G; Román G; Kovács I; Pócsi I
    J Sci Food Agric; 2013 Jul; 93(9):2221-8. PubMed ID: 23349056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Siderophore mediated iron(III) uptake in Gliocladium virens. 1. Properties of cis-fusarinine, trans-fusarinine, dimerum acid, and their ferric complexes.
    Jalal MA; Love SK; van der Helm D
    J Inorg Biochem; 1986 Dec; 28(4):417-30. PubMed ID: 2950205
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iron transport systems of Serratia marcescens.
    Angerer A; Klupp B; Braun V
    J Bacteriol; 1992 Feb; 174(4):1378-87. PubMed ID: 1531225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new iron(III) chelator of coprogen-type siderophore from the deep-sea-derived fungus Mycosphaerella sp. SCSIO z059.
    Huang ZH; Liang X; Qi SH
    Chin J Nat Med; 2020 Apr; 18(4):243-249. PubMed ID: 32402399
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.