These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 29512680)

  • 1. Graphene delamination using 'electrochemical methods': an ion intercalation effect.
    Verguts K; Coroa J; Huyghebaert C; De Gendt S; Brems S
    Nanoscale; 2018 Mar; 10(12):5515-5521. PubMed ID: 29512680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlling Water Intercalation Is Key to a Direct Graphene Transfer.
    Verguts K; Schouteden K; Wu CH; Peters L; Vrancken N; Wu X; Li Z; Erkens M; Porret C; Huyghebaert C; Van Haesendonck C; De Gendt S; Brems S
    ACS Appl Mater Interfaces; 2017 Oct; 9(42):37484-37492. PubMed ID: 28972738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 'Bubble-free' electrochemical delamination of CVD graphene films.
    Cherian CT; Giustiniano F; Martin-Fernandez I; Andersen H; Balakrishnan J; Özyilmaz B
    Small; 2015 Jan; 11(2):189-94. PubMed ID: 25179223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxygen Intercalation of Graphene on Transition Metal Substrate: An Edge-Limited Mechanism.
    Ma L; Zeng XC; Wang J
    J Phys Chem Lett; 2015 Oct; 6(20):4099-105. PubMed ID: 26722784
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Layer Number Dependence of Li(+) Intercalation on Few-Layer Graphene and Electrochemical Imaging of Its Solid-Electrolyte Interphase Evolution.
    Hui J; Burgess M; Zhang J; Rodríguez-López J
    ACS Nano; 2016 Apr; 10(4):4248-57. PubMed ID: 26943950
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlled electrochemical carboxylation of graphene to create a versatile chemical platform for further functionalization.
    Bjerglund E; Kongsfelt M; Shimizu K; Jensen BB; Koefoed L; Ceccato M; Skrydstrup T; Pedersen SU; Daasbjerg K
    Langmuir; 2014 Jun; 30(22):6622-8. PubMed ID: 24852930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical delamination of CVD-grown graphene film: toward the recyclable use of copper catalyst.
    Wang Y; Zheng Y; Xu X; Dubuisson E; Bao Q; Lu J; Loh KP
    ACS Nano; 2011 Dec; 5(12):9927-33. PubMed ID: 22034835
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of friction on oxidative graphite intercalation and high-quality graphene formation.
    Seiler S; Halbig CE; Grote F; Rietsch P; Börrnert F; Kaiser U; Meyer B; Eigler S
    Nat Commun; 2018 Feb; 9(1):836. PubMed ID: 29483555
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous Electrochemical Reduction and Delamination of Graphene Oxide Films.
    Wang X; Kholmanov I; Chou H; Ruoff RS
    ACS Nano; 2015 Sep; 9(9):8737-43. PubMed ID: 26257072
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facile graphene transfer directly to target substrates with a reusable metal catalyst.
    Mafra DL; Ming T; Kong J
    Nanoscale; 2015 Sep; 7(36):14807-12. PubMed ID: 26289387
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical Transparency of Graphene.
    Jeong DW; Kim K; Lee G; Kang M; Chang H; Jang AR; Lee JO
    ACS Nano; 2022 Jun; 16(6):9278-9286. PubMed ID: 35699264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermally Reduced Graphene Oxide Electrochemically Activated by Bis-Spiro Quaternary Alkyl Ammonium for Capacitors.
    He T; Meng X; Nie J; Tong Y; Cai K
    ACS Appl Mater Interfaces; 2016 Jun; 8(22):13865-70. PubMed ID: 27180820
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cerium Oxide Nanoclusters on Graphene/Ru(0001): Intercalation of Oxygen via Spillover.
    Novotny Z; Netzer FP; Dohnálek Z
    ACS Nano; 2015 Aug; 9(8):8617-26. PubMed ID: 26230753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical simulation of reduction mechanism of graphene oxide in sodium hydroxide solution.
    Chen C; Kong W; Duan HM; Zhang J
    Phys Chem Chem Phys; 2014 Jul; 16(25):12858-64. PubMed ID: 24845648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical and Electrochemical Alkali Cations Intercalation/Release in an Ionic Hydrogen Bonded Network.
    Gerer G; Melin F; Hellwig P; Hosseini MW; Ferlay S
    Inorg Chem; 2019 Jan; 58(2):1541-1547. PubMed ID: 30629422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlling the properties of graphene produced by electrochemical exfoliation.
    Hofmann M; Chiang WY; Nguyễn TD; Hsieh YP
    Nanotechnology; 2015 Aug; 26(33):335607. PubMed ID: 26221914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual-Ion Intercalation and High Volumetric Capacitance in a Two-Dimensional Non-Porous Coordination Polymer.
    Banda H; Dou JH; Chen T; Zhang Y; Dincă M
    Angew Chem Int Ed Engl; 2021 Dec; 60(52):27119-27125. PubMed ID: 34597446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. What Do Laser-Induced Transient Techniques Reveal for Batteries? Na- and K-Intercalation from Aqueous Electrolytes as an Example.
    Scieszka D; Yun J; Bandarenka AS
    ACS Appl Mater Interfaces; 2017 Jun; 9(23):20213-20222. PubMed ID: 28530796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Free-standing α-Co(OH)2/graphene oxide thin films fabricated through delamination and reassembling of acetate anions intercalated α-Co(OH)2 and graphene oxide in water.
    Ma K; Zhao W; Cheng JP; Liu F; Zhang X
    J Colloid Interface Sci; 2016 Apr; 468():238-246. PubMed ID: 26852347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemistry below graphene: decoupling epitaxial graphene from metals by potential-controlled electrochemical oxidation.
    Palacio I; Otero-Irurueta G; Alonso C; Martínez JI; López-Elvira E; Muñoz-Ochando I; Salavagione HJ; López MF; García-Hernández M; Méndez J; Ellis GJ; Martín-Gago JA
    Carbon N Y; 2018 Apr; 129():837-846. PubMed ID: 30190626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.