BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 29512691)

  • 1. Effect of lithocholic acid on biologically active α,β-unsaturated aldehydes induced by H2O2 in glioma mitochondria for use in glioma treatment.
    Wang D; Bie L; Su Y; Xu H; Zhang F; Su Y; Zhang B
    Int J Mol Med; 2018 Jun; 41(6):3195-3202. PubMed ID: 29512691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peroxide-induced cell death and lipid peroxidation in C6 glioma cells.
    Linden A; Gülden M; Martin HJ; Maser E; Seibert H
    Toxicol In Vitro; 2008 Aug; 22(5):1371-6. PubMed ID: 18346863
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lithocholic bile acid selectively kills neuroblastoma cells, while sparing normal neuronal cells.
    Goldberg AA; Beach A; Davies GF; Harkness TA; Leblanc A; Titorenko VI
    Oncotarget; 2011 Oct; 2(10):761-82. PubMed ID: 21992775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The reaction of 2-thiobarbituric acid with biologically active alpha,beta-unsaturated aldehydes.
    Witz G; Lawrie NJ; Zaccaria A; Ferran HE; Goldstein BD
    J Free Radic Biol Med; 1986; 2(1):33-9. PubMed ID: 3772040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. H2O2-induced lipid peroxidation in rat brain homogenates is greatly reduced by melatonin.
    Sewerynek E; Poeggeler B; Melchiorri D; Reiter RJ
    Neurosci Lett; 1995 Aug; 195(3):203-5. PubMed ID: 8584210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pseudolaric acid B triggers ferroptosis in glioma cells via activation of Nox4 and inhibition of xCT.
    Wang Z; Ding Y; Wang X; Lu S; Wang C; He C; Wang L; Piao M; Chi G; Luo Y; Ge P
    Cancer Lett; 2018 Aug; 428():21-33. PubMed ID: 29702192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies on lipid peroxidation in pancreatic tissue. In vitro formation of thiobarbituric-acid-reactive substances (TBRS).
    Letko G; Winkler U; Matthias R; Heinrich P
    Exp Pathol; 1991; 42(3):151-7. PubMed ID: 1915759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aldehyde dehydrogenases may modulate signaling by lipid peroxidation-derived bioactive aldehydes.
    Tagnon MD; Simeon KO
    Plant Signal Behav; 2017 Nov; 12(11):e1387707. PubMed ID: 28990846
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The action of hydrogen peroxide on the formation of thiobarbituric acid-reactive material from microsomes, liposomes or from DNA damaged by bleomycin or phenanthroline. Artefacts in the thiobarbituric acid test.
    Cecchini R; Aruoma OI; Halliwell B
    Free Radic Res Commun; 1990; 10(4-5):245-58. PubMed ID: 1705234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein N-acylation: H2O2-mediated covalent modification of protein by lipid peroxidation-derived saturated aldehydes.
    Ishino K; Shibata T; Ishii T; Liu YT; Toyokuni S; Zhu X; Sayre LM; Uchida K
    Chem Res Toxicol; 2008 Jun; 21(6):1261-70. PubMed ID: 18512967
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Platycodin D Protects Human Fibroblast Cells from Premature Senescence Induced by H2O2 through Improving Mitochondrial Biogenesis.
    Shi C; Li Q; Zhang X
    Pharmacology; 2020; 105(9-10):598-608. PubMed ID: 32008007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protective effect of beta-carbolines and other antioxidants on lipid peroxidation due to hydrogen peroxide in rat brain homogenates.
    García JJ; Martínez-Ballarín E; Robinson M; Allué JL; Reiter RJ; Osuna C; Acuña-Castroviejo D
    Neurosci Lett; 2000 Nov; 294(1):1-4. PubMed ID: 11044572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury.
    Janero DR
    Free Radic Biol Med; 1990; 9(6):515-40. PubMed ID: 2079232
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protective effect of docosahexaenoic acid against hydrogen peroxide-induced oxidative stress in human lymphocytes.
    Bechoua S; Dubois M; Dominguez Z; Goncalves A; Némoz G; Lagarde M; Prigent AF
    Biochem Pharmacol; 1999 May; 57(9):1021-30. PubMed ID: 10796072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron transport chain of Saccharomyces cerevisiae mitochondria is inhibited by H2O2 at succinate-cytochrome c oxidoreductase level without lipid peroxidation involvement.
    Cortés-Rojo C; Calderón-Cortés E; Clemente-Guerrero M; Manzo-Avalos S; Uribe S; Boldogh I; Saavedra-Molina A
    Free Radic Res; 2007 Nov; 41(11):1212-23. PubMed ID: 17907001
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Roles of catalase and cytochrome c in hydroperoxide-dependent lipid peroxidation and chemiluminescence in rat heart and kidney mitochondria.
    Radi R; Sims S; Cassina A; Turrens JF
    Free Radic Biol Med; 1993 Dec; 15(6):653-9. PubMed ID: 8138192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipid peroxidation, protein thiol oxidation and DNA damage in hydrogen peroxide-induced injury to endothelial cells: role of activation of poly(ADP-ribose)polymerase.
    Kirkland JB
    Biochim Biophys Acta; 1991 May; 1092(3):319-25. PubMed ID: 1904775
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies on Hg(II)-induced H2O2 formation and oxidative stress in vivo and in vitro in rat kidney mitochondria.
    Lund BO; Miller DM; Woods JS
    Biochem Pharmacol; 1993 May; 45(10):2017-24. PubMed ID: 8512585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The presence of molecular markers of in vivo lipid peroxidation in osteoarthritic cartilage: a pathogenic role in osteoarthritis.
    Shah R; Raska K; Tiku ML
    Arthritis Rheum; 2005 Sep; 52(9):2799-807. PubMed ID: 16145669
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytotoxicity and metabolism of 4-hydroxy-2-nonenal and 2-nonenal in H2O2-resistant cell lines. Do aldehydic by-products of lipid peroxidation contribute to oxidative stress?
    Spitz DR; Malcolm RR; Roberts RJ
    Biochem J; 1990 Apr; 267(2):453-9. PubMed ID: 2334404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.