BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 29512887)

  • 1. Opioid and nondopamine reward circuitry and state-dependent mechanisms.
    Fujita M; Ide S; Ikeda K
    Ann N Y Acad Sci; 2019 Sep; 1451(1):29-41. PubMed ID: 29512887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A ghrelin receptor (GHS-R1A) antagonist attenuates the rewarding properties of morphine and increases opioid peptide levels in reward areas in mice.
    Engel JA; Nylander I; Jerlhag E
    Eur Neuropsychopharmacol; 2015 Dec; 25(12):2364-71. PubMed ID: 26508707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. There and back again: a tale of norepinephrine and drug addiction.
    Weinshenker D; Schroeder JP
    Neuropsychopharmacology; 2007 Jul; 32(7):1433-51. PubMed ID: 17164822
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brain mechanisms of drug reward and euphoria.
    Wise RA; Bozarth MA
    Psychiatr Med; 1985; 3(4):445-60. PubMed ID: 2893431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Serotonin-1A receptor dependent modulation of pain and reward for improving therapy of chronic pain.
    Haleem DJ
    Pharmacol Res; 2018 Aug; 134():212-219. PubMed ID: 29969666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morphine reward in dopamine-deficient mice.
    Hnasko TS; Sotak BN; Palmiter RD
    Nature; 2005 Dec; 438(7069):854-7. PubMed ID: 16341013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression of immediate early genes in brain reward circuitries: Differential regulation by psychostimulant and opioid drugs.
    Bisagno V; Cadet JL
    Neurochem Int; 2019 Mar; 124():10-18. PubMed ID: 30557593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. HIV Infection and Neurocognitive Disorders in the Context of Chronic Drug Abuse: Evidence for Divergent Findings Dependent upon Prior Drug History.
    Illenberger JM; Harrod SB; Mactutus CF; McLaurin KA; Kallianpur A; Booze RM
    J Neuroimmune Pharmacol; 2020 Dec; 15(4):715-728. PubMed ID: 32533296
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinct Roles of Opioid and Dopamine Systems in Lateral Hypothalamic Intracranial Self-Stimulation.
    Ide S; Takahashi T; Takamatsu Y; Uhl GR; Niki H; Sora I; Ikeda K
    Int J Neuropsychopharmacol; 2017 May; 20(5):403-409. PubMed ID: 28031268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endogenous opioids and addiction to alcohol and other drugs of abuse.
    Gianoulakis C
    Curr Top Med Chem; 2004; 4(1):39-50. PubMed ID: 14754375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The neurobiology of addictive disorders.
    Ross S; Peselow E
    Clin Neuropharmacol; 2009; 32(5):269-76. PubMed ID: 19834992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Involvement of the brain histaminergic system in addiction and addiction-related behaviors: a comprehensive review with emphasis on the potential therapeutic use of histaminergic compounds in drug dependence.
    Brabant C; Alleva L; Quertemont E; Tirelli E
    Prog Neurobiol; 2010 Nov; 92(3):421-41. PubMed ID: 20638439
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hypothesizing That Neuropharmacological and Neuroimaging Studies of Glutaminergic-Dopaminergic Optimization Complex (KB220Z) Are Associated With "Dopamine Homeostasis" in Reward Deficiency Syndrome (RDS).
    Blum K; Febo M; Fried L; Li M; Dushaj K; Braverman ER; McLaughlin T; Steinberg B; Badgaiyan RD
    Subst Use Misuse; 2017 Mar; 52(4):535-547. PubMed ID: 28033474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dopamine D
    Rivera A; Gago B; Suárez-Boomgaard D; Yoshitake T; Roales-Buján R; Valderrama-Carvajal A; Bilbao A; Medina-Luque J; Díaz-Cabiale Z; Craenenbroeck KV; Borroto-Escuela DO; Kehr J; Rodríguez de Fonseca F; Santín L; de la Calle A; Fuxe K
    Addict Biol; 2017 Sep; 22(5):1232-1245. PubMed ID: 27212105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular neurological correlates of endorphinergic/dopaminergic mechanisms in reward circuitry linked to endorphinergic deficiency syndrome (EDS).
    Blum K; Baron D; McLaughlin T; Gold MS
    J Neurol Sci; 2020 Apr; 411():116733. PubMed ID: 32088516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Actions of narcotics on brain dopamine metabolism and their relevance for "psychomotor" effects.
    Kuschinsky K
    Arzneimittelforschung; 1976 Apr; 26(4):563-7. PubMed ID: 8059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of drug class on reward in substance use disorders.
    Jones JD; Arout CA; Luba R; Murugesan D; Madera G; Gorsuch L; Schusterman R; Martinez S
    Pharmacol Biochem Behav; 2024 Jul; 240():173771. PubMed ID: 38670466
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antireward, compulsivity, and addiction: seminal contributions of Dr. Athina Markou to motivational dysregulation in addiction.
    Koob GF
    Psychopharmacology (Berl); 2017 May; 234(9-10):1315-1332. PubMed ID: 28050629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Neurobiology of opioid dependence].
    Scherbaum N; Bonnet U
    Schmerz; 2018 Dec; 32(6):483-494. PubMed ID: 29946961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Implication of dopaminergic projection from the ventral tegmental area to the anterior cingulate cortex in μ-opioid-induced place preference.
    Narita M; Matsushima Y; Niikura K; Narita M; Takagi S; Nakahara K; Kurahashi K; Abe M; Saeki M; Asato M; Imai S; Ikeda K; Kuzumaki N; Suzuki T
    Addict Biol; 2010 Oct; 15(4):434-47. PubMed ID: 20731628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.