BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 29512887)

  • 21. Reward mechanisms in the brain and their role in dependence: evidence from neurophysiological and neuroimaging studies.
    Martin-Soelch C; Leenders KL; Chevalley AF; Missimer J; Künig G; Magyar S; Mino A; Schultz W
    Brain Res Brain Res Rev; 2001 Oct; 36(2-3):139-49. PubMed ID: 11690610
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of Dopamine Signaling in Drug Addiction.
    Chen W; Nong Z; Li Y; Huang J; Chen C; Huang L
    Curr Top Med Chem; 2017; 17(21):2440-2455. PubMed ID: 28474551
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Neurological correlates of brain reward circuitry linked to opioid use disorder (OUD): Do homo sapiens acquire or have a reward deficiency syndrome?
    Gold MS; Baron D; Bowirrat A; Blum K
    J Neurol Sci; 2020 Nov; 418():117137. PubMed ID: 32957037
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Opiate-like effects of sugar on gene expression in reward areas of the rat brain.
    Spangler R; Wittkowski KM; Goddard NL; Avena NM; Hoebel BG; Leibowitz SF
    Brain Res Mol Brain Res; 2004 May; 124(2):134-42. PubMed ID: 15135221
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Alpha1b-adrenergic receptors control locomotor and rewarding effects of psychostimulants and opiates.
    Drouin C; Darracq L; Trovero F; Blanc G; Glowinski J; Cotecchia S; Tassin JP
    J Neurosci; 2002 Apr; 22(7):2873-84. PubMed ID: 11923452
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The role of reward pathways in the development of drug dependence.
    Wise RA
    Pharmacol Ther; 1987; 35(1-2):227-63. PubMed ID: 3321101
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Heterogeneous dopamine signals support distinct features of motivated actions: implications for learning and addiction.
    Saddoris MP; Siletti KA; Stansfield KJ; Bercum MF
    Learn Mem; 2018 Sep; 25(9):416-424. PubMed ID: 30115763
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sex differences in neural mechanisms mediating reward and addiction.
    Becker JB; Chartoff E
    Neuropsychopharmacology; 2019 Jan; 44(1):166-183. PubMed ID: 29946108
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Neuroinflammatory Response in Reward-Associated Psychostimulants and Opioids: A Review.
    Karimi-Haghighi S; Chavoshinezhad S; Mozafari R; Noorbakhsh F; Borhani-Haghighi A; Haghparast A
    Cell Mol Neurobiol; 2023 Mar; 43(2):649-682. PubMed ID: 35461410
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Brain reward circuitry: insights from unsensed incentives.
    Wise RA
    Neuron; 2002 Oct; 36(2):229-40. PubMed ID: 12383779
    [TBL] [Abstract][Full Text] [Related]  

  • 31. STEP signaling pathway mediates psychomotor stimulation and morphine withdrawal symptoms, but not for reward, analgesia and tolerance.
    Kim YJ; Kang Y; Park HY; Lee JR; Yu DY; Murata T; Gondo Y; Hwang JH; Kim YH; Lee CH; Rhee M; Han PL; Chung BH; Lee HJ; Kim KS
    Exp Mol Med; 2016 Feb; 48(2):e212. PubMed ID: 26915673
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dopaminergic modulation of the reward system in schizophrenia: a placebo-controlled dopamine depletion fMRI study.
    da Silva Alves F; Bakker G; Schmitz N; Abeling N; Hasler G; van der Meer J; Nederveen A; de Haan L; Linszen D; van Amelsvoort T
    Eur Neuropsychopharmacol; 2013 Nov; 23(11):1577-86. PubMed ID: 23978392
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dopamine-dependent architecture of cortico-subcortical network connectivity.
    Cole DM; Oei NY; Soeter RP; Both S; van Gerven JM; Rombouts SA; Beckmann CF
    Cereb Cortex; 2013 Jul; 23(7):1509-16. PubMed ID: 22645252
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Neurocircuitry of alcohol addiction: synthesis from animal models.
    Koob GF
    Handb Clin Neurol; 2014; 125():33-54. PubMed ID: 25307567
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Absence of opiate rewarding effects in mice lacking dopamine D2 receptors.
    Maldonado R; Saiardi A; Valverde O; Samad TA; Roques BP; Borrelli E
    Nature; 1997 Aug; 388(6642):586-9. PubMed ID: 9252189
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pain, morphine and addiction.
    Penny S
    Nurs N Z; 2008 Sep; 14(9):15-7. PubMed ID: 18959291
    [No Abstract]   [Full Text] [Related]  

  • 37. Molecular evidence for the functional role of dopamine D3 receptor in the morphine-induced rewarding effect and hyperlocomotion.
    Narita M; Mizuo K; Mizoguchi H; Sakata M; Narita M; Tseng LF; Suzuki T
    J Neurosci; 2003 Feb; 23(3):1006-12. PubMed ID: 12574430
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dopamine and reward: a view from the prefrontal cortex.
    Chau BKH; Jarvis H; Law CK; Chong TT
    Behav Pharmacol; 2018 Oct; 29(7):569-583. PubMed ID: 30188354
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Study on effects of Corydalis yanhusuo and L-THP on dopamine of reward circuitry in conditioned place preference rats and comparison].
    Yu SY; Yang PR; Qian G; Wu MS; Bai WF; Tu P; Luo SY
    Zhongguo Zhong Yao Za Zhi; 2013 Nov; 38(22):3928-32. PubMed ID: 24558878
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Opioid-induced rewards, locomotion, and dopamine activation: A proposed model for control by mesopontine and rostromedial tegmental neurons.
    Steidl S; Wasserman DI; Blaha CD; Yeomans JS
    Neurosci Biobehav Rev; 2017 Dec; 83():72-82. PubMed ID: 28951251
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.