These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 29513272)
21. Defect-Free Graphene Synthesized Directly at 150 °C via Chemical Vapor Deposition with No Transfer. Park BJ; Choi JS; Eom JH; Ha H; Kim HY; Lee S; Shin H; Yoon SG ACS Nano; 2018 Feb; 12(2):2008-2016. PubMed ID: 29390178 [TBL] [Abstract][Full Text] [Related]
22. Phase Formation Behavior in Ultrathin Iron Oxide. Jõgi I; Jacobsson TJ; Fondell M; Wätjen T; Carlsson JO; Boman M; Edvinsson T Langmuir; 2015 Nov; 31(45):12372-81. PubMed ID: 26506091 [TBL] [Abstract][Full Text] [Related]
23. Direct growth of nanographene at low temperature from carbon black for highly sensitive temperature detectors. Li K; Cai Z; Li M; Liu D; Cao M; Xia D; Jin Z; Wang Z; Dong L; Xu X; Wei D Nanotechnology; 2016 Dec; 27(50):505603. PubMed ID: 27861166 [TBL] [Abstract][Full Text] [Related]
24. Direct low-temperature nanographene CVD synthesis over a dielectric insulator. Rümmeli MH; Bachmatiuk A; Scott A; Börrnert F; Warner JH; Hoffman V; Lin JH; Cuniberti G; Büchner B ACS Nano; 2010 Jul; 4(7):4206-10. PubMed ID: 20586480 [TBL] [Abstract][Full Text] [Related]
25. Layer-controlled precise fabrication of ultrathin MoS Liu L; Huang Y; Sha J; Chen Y Nanotechnology; 2017 May; 28(19):195605. PubMed ID: 28323252 [TBL] [Abstract][Full Text] [Related]
26. Designed CVD growth of graphene via process engineering. Yan K; Fu L; Peng H; Liu Z Acc Chem Res; 2013 Oct; 46(10):2263-74. PubMed ID: 23869401 [TBL] [Abstract][Full Text] [Related]
28. Magnetic Properties of CoFe Pham CD; Chang J; Zurbuchen MA; Chang JP ACS Appl Mater Interfaces; 2017 Oct; 9(42):36980-36988. PubMed ID: 28925262 [TBL] [Abstract][Full Text] [Related]
29. Unconventional electronic and magnetic functions of nanographene-based host-guest systems. Enoki T; Takai K Dalton Trans; 2008 Aug; (29):3773-81. PubMed ID: 18629396 [TBL] [Abstract][Full Text] [Related]
30. Growth and Characterization of Al2O3 Atomic Layer Deposition Films on sp(2)-Graphitic Carbon Substrates Using NO2/Trimethylaluminum Pretreatment. Young MJ; Musgrave CB; George SM ACS Appl Mater Interfaces; 2015 Jun; 7(22):12030-7. PubMed ID: 25965097 [TBL] [Abstract][Full Text] [Related]
31. Direct, Transfer-Free Growth of Large-Area Hexagonal Boron Nitride Films by Plasma-Enhanced Chemical Film Conversion (PECFC) of Printable, Solution-Processed Ammonia Borane. Liu T; Premasiri K; Sui Y; Zhan X; Mustafa HAB; Akkus O; Zorman CA; Gao XPA; Sankaran RM ACS Appl Mater Interfaces; 2018 Dec; 10(50):43936-43945. PubMed ID: 30462491 [TBL] [Abstract][Full Text] [Related]
32. Atomic Layer Deposition of Rhenium Disulfide. Hämäläinen J; Mattinen M; Mizohata K; Meinander K; Vehkamäki M; Räisänen J; Ritala M; Leskelä M Adv Mater; 2018 Jun; 30(24):e1703622. PubMed ID: 29315833 [TBL] [Abstract][Full Text] [Related]
33. Activation of Metal-Organic Precursors by Electron Bombardment in the Gas Phase for Enhanced Deposition of Solid Films. Sun H; Qin X; Zaera F J Phys Chem Lett; 2012 Sep; 3(17):2523-7. PubMed ID: 26292144 [TBL] [Abstract][Full Text] [Related]
34. Large-area synthesis of high-quality and uniform graphene films on copper foils. Li X; Cai W; An J; Kim S; Nah J; Yang D; Piner R; Velamakanni A; Jung I; Tutuc E; Banerjee SK; Colombo L; Ruoff RS Science; 2009 Jun; 324(5932):1312-4. PubMed ID: 19423775 [TBL] [Abstract][Full Text] [Related]
35. Dry transfer of chemical-vapor-deposition-grown graphene onto liquid-sensitive surfaces for tunnel junction applications. Feng Y; Chen K Nanotechnology; 2015 Jan; 26(3):035302. PubMed ID: 25549272 [TBL] [Abstract][Full Text] [Related]
36. A multilayer-graphene nanosheet film deposited on a ceramic substrate without a catalyst for constructing an electrochemiluminescence imaging platform. Wang J; Shang P; Zhong J; Lin S; Chi Y Nanoscale; 2019 Jul; 11(25):12132-12138. PubMed ID: 31198922 [TBL] [Abstract][Full Text] [Related]
37. Transfer of CVD-grown monolayer graphene onto arbitrary substrates. Suk JW; Kitt A; Magnuson CW; Hao Y; Ahmed S; An J; Swan AK; Goldberg BB; Ruoff RS ACS Nano; 2011 Sep; 5(9):6916-24. PubMed ID: 21894965 [TBL] [Abstract][Full Text] [Related]
38. Deposition of Diamond Films in a Closed Hot Filament CVD System. Lai GR; Farabaugh EN; Feldman A; Robins LH J Res Natl Inst Stand Technol; 1995; 100(1):43-49. PubMed ID: 29151726 [TBL] [Abstract][Full Text] [Related]
39. Copper-vapor-assisted chemical vapor deposition for high-quality and metal-free single-layer graphene on amorphous SiO2 substrate. Kim H; Song I; Park C; Son M; Hong M; Kim Y; Kim JS; Shin HJ; Baik J; Choi HC ACS Nano; 2013 Aug; 7(8):6575-82. PubMed ID: 23869700 [TBL] [Abstract][Full Text] [Related]
40. Pulsed-Plasma Physical Vapor Deposition Approach Toward the Facile Synthesis of Multilayer and Monolayer Graphene for Anticoagulation Applications. Vijayaraghavan RK; Gaman C; Jose B; McCoy AP; Cafolla T; McNally PJ; Daniels S ACS Appl Mater Interfaces; 2016 Feb; 8(7):4878-86. PubMed ID: 26808203 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]