These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 29513305)

  • 1. Electro-nucleation of water nano-droplets in No Man's Land to fault-free ice I
    Nandi PK; Burnham CJ; English NJ
    Phys Chem Chem Phys; 2018 Mar; 20(12):8042-8053. PubMed ID: 29513305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electro-suppression of water nano-droplets' solidification in no man's land: Electromagnetic fields' entropic trapping of supercooled water.
    Nandi PK; Burnham CJ; English NJ
    J Chem Phys; 2018 Jan; 148(4):044503. PubMed ID: 29390822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic study on electro-nucleation of water in a heterogeneous propane nano-bubble system to form polycrystalline ice I
    Ghaani MR; English NJ
    J Chem Phys; 2020 Aug; 153(8):084501. PubMed ID: 32872892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Freezing water in no-man's land.
    Manka A; Pathak H; Tanimura S; Wölk J; Strey R; Wyslouzil BE
    Phys Chem Chem Phys; 2012 Apr; 14(13):4505-16. PubMed ID: 22354018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ice crystallization in water's "no-man's land".
    Moore EB; Molinero V
    J Chem Phys; 2010 Jun; 132(24):244504. PubMed ID: 20590203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ice nucleation at the nanoscale probes no man's land of water.
    Li T; Donadio D; Galli G
    Nat Commun; 2013; 4():1887. PubMed ID: 23695681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of stacking disorder in ice nucleation.
    Lupi L; Hudait A; Peters B; Grünwald M; Gotchy Mullen R; Nguyen AH; Molinero V
    Nature; 2017 Nov; 551(7679):218-222. PubMed ID: 29120424
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Externally applied electric fields up to 1.6 × 10(5) V/m do not affect the homogeneous nucleation of ice in supercooled water.
    Stan CA; Tang SK; Bishop KJ; Whitesides GM
    J Phys Chem B; 2011 Feb; 115(5):1089-97. PubMed ID: 21174462
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the role of surface charges for homogeneous freezing of supercooled water microdroplets.
    Rzesanke D; Nadolny J; Duft D; Müller R; Kiselev A; Leisner T
    Phys Chem Chem Phys; 2012 Jul; 14(26):9359-63. PubMed ID: 22294097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ice nucleation forced by transient electric fields.
    Löwe JM; Hinrichsen V; Schremb M; Tropea C
    Phys Rev E; 2021 Dec; 104(6-1):064801. PubMed ID: 35030904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spontaneous Freezing of Water between 233 and 235 K Is Not Due to Homogeneous Nucleation.
    Xue H; Fu Y; Lu Y; Hao D; Li K; Bai G; Ou-Yang ZC; Wang J; Zhou X
    J Am Chem Soc; 2021 Sep; 143(34):13548-13556. PubMed ID: 34406749
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Homogeneous ice nucleation from aqueous inorganic/organic particles representative of biomass burning: water activity, freezing temperatures, nucleation rates.
    Knopf DA; Rigg YJ
    J Phys Chem A; 2011 Feb; 115(5):762-73. PubMed ID: 21235213
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anomalous Behavior of the Homogeneous Ice Nucleation Rate in "No-Man's Land".
    Laksmono H; McQueen TA; Sellberg JA; Loh ND; Huang C; Schlesinger D; Sierra RG; Hampton CY; Nordlund D; Beye M; Martin AV; Barty A; Seibert MM; Messerschmidt M; Williams GJ; Boutet S; Amann-Winkel K; Loerting T; Pettersson LG; Bogan MJ; Nilsson A
    J Phys Chem Lett; 2015 Jul; 6(14):2826-2832. PubMed ID: 26207172
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stacking disorder in ice I.
    Malkin TL; Murray BJ; Salzmann CG; Molinero V; Pickering SJ; Whale TF
    Phys Chem Chem Phys; 2015 Jan; 17(1):60-76. PubMed ID: 25380218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation and stability of cubic ice in water droplets.
    Murray BJ; Bertram AK
    Phys Chem Chem Phys; 2006 Jan; 8(1):186-92. PubMed ID: 16482260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics simulations of ice nucleation by electric fields.
    Yan JY; Patey GN
    J Phys Chem A; 2012 Jul; 116(26):7057-64. PubMed ID: 22686470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Supercooled and glassy water: Metastable liquid(s), amorphous solid(s), and a no-man's land.
    Handle PH; Loerting T; Sciortino F
    Proc Natl Acad Sci U S A; 2017 Dec; 114(51):13336-13344. PubMed ID: 29133419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dependence of homogeneous crystal nucleation in water droplets on their radii and its implication for modeling the formation of ice particles in cirrus clouds.
    Djikaev YS; Ruckenstein E
    Phys Chem Chem Phys; 2017 Aug; 19(30):20075-20081. PubMed ID: 28725886
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure of ice crystallized from supercooled water.
    Malkin TL; Murray BJ; Brukhno AV; Anwar J; Salzmann CG
    Proc Natl Acad Sci U S A; 2012 Jan; 109(4):1041-5. PubMed ID: 22232652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Freezing, melting and structure of ice in a hydrophilic nanopore.
    Moore EB; de la Llave E; Welke K; Scherlis DA; Molinero V
    Phys Chem Chem Phys; 2010 Apr; 12(16):4124-34. PubMed ID: 20379503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.