These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 29513310)

  • 1. Inertio-capillary cross-streamline drift of droplets in Poiseuille flow using dissipative particle dynamics simulations.
    Marson RL; Huang Y; Huang M; Fu T; Larson RG
    Soft Matter; 2018 Mar; 14(12):2267-2280. PubMed ID: 29513310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inertial migration of a rigid sphere in plane Poiseuille flow as a test of dissipative particle dynamics simulations.
    Huang Y; Marson RL; Larson RG
    J Chem Phys; 2018 Oct; 149(16):164912. PubMed ID: 30384765
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cross-stream migration of a Brownian droplet in a polymer solution under Poiseuille flow.
    Howard MP; Truskett TM; Nikoubashman A
    Soft Matter; 2019 Apr; 15(15):3168-3178. PubMed ID: 30883631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-dimensional lattice Boltzmann simulation of colloid migration in rough-walled narrow flow channels.
    Başağaoğlu H; Meakin P; Succi S; Redden GR; Ginn TR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 1):031405. PubMed ID: 18517379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of the dissipative particle dynamics method to the instability problem of a liquid thread.
    Mo CJ; Qin LZ; Zhao F; Yang LJ
    Phys Rev E; 2016 Dec; 94(6-1):063113. PubMed ID: 28085475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrodynamic interactions for single dissipative-particle-dynamics particles and their clusters and filaments.
    Pan W; Fedosov DA; Karniadakis GE; Caswell B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 2):046706. PubMed ID: 18999560
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Migration of a droplet in a cylindrical tube in the creeping flow regime.
    Nath B; Biswas G; Dalal A; Sahu KC
    Phys Rev E; 2017 Mar; 95(3-1):033110. PubMed ID: 28415194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of mesoscopic particle-based methods in microfluidic geometries.
    Zhao T; Wang X; Jiang L; Larson RG
    J Chem Phys; 2013 Aug; 139(8):084109. PubMed ID: 24006976
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluid dynamical analysis of a particle with large vapor transport in poiseuille flow.
    Asavatesanupap C; Sadhal SS
    Ann N Y Acad Sci; 2009 Apr; 1161():268-76. PubMed ID: 19426325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulations of droplet coalescence in simple shear flow.
    Shardt O; Derksen JJ; Mitra SK
    Langmuir; 2013 May; 29(21):6201-12. PubMed ID: 23642079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Periodic emission of droplets from an oscillating electrified meniscus of a low-viscosity, highly conductive liquid.
    Hijano AJ; Loscertales IG; Ibáñez SE; Higuera FJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):013011. PubMed ID: 25679712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental studies on droplet characteristics in a microfluidic flow focusing droplet generator: effect of continuous phase on droplet encapsulation.
    Srikanth S; Raut S; Dubey SK; Ishii I; Javed A; Goel S
    Eur Phys J E Soft Matter; 2021 Aug; 44(8):108. PubMed ID: 34455490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heavy ellipsoids in creeping shear flow: transitions of the particle rotation rate and orbit shape.
    Lundell F; Carlsson A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 2):016323. PubMed ID: 20365476
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deformation and breakup of micro- and nanoparticle stabilized droplets in microfluidic extensional flows.
    Mulligan MK; Rothstein JP
    Langmuir; 2011 Aug; 27(16):9760-8. PubMed ID: 21732665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The fluid property dependency on micro-fluidic characteristics in the deposition process for microfabrication.
    Chau SW; Hsu KL; Chen SC; Liou TM; Shih KC
    Biosens Bioelectron; 2004 Jul; 20(1):133-8. PubMed ID: 15142586
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polymer and particle adsorption at the PDMS droplet-water interface.
    Prestidge CA; Barnes T; Simovic S
    Adv Colloid Interface Sci; 2004 May; 108-109():105-18. PubMed ID: 15072933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissipative particle dynamics simulations of the viscosities of molten TNT and molten TNT suspensions containing nanoparticles.
    Zhou Y; Li Y; Qian W; He B
    J Mol Model; 2016 Sep; 22(9):216. PubMed ID: 27553301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of Microdroplet Breakup Regime in Asymmetric T-Junction Microchannels.
    Cheng WL; Sadr R; Dai J; Han A
    Biomed Microdevices; 2018 Aug; 20(3):72. PubMed ID: 30105562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A simple capillary-based open microfluidic device for size on-demand high-throughput droplet/bubble/microcapsule generation.
    Mei L; Jin M; Xie S; Yan Z; Wang X; Zhou G; van den Berg A; Shui L
    Lab Chip; 2018 Sep; 18(18):2806-2815. PubMed ID: 30112532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.