These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 29513350)

  • 1. The Perfect Enzyme : Revisiting the Modelling of Initial Proton Transfer in Triosephosphate Isomerase.
    Aschi M; Amadei A
    Theor Biol Forum; 2016 Jan; 109(1-2):13-36. PubMed ID: 29513350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transmission coefficient calculation for proton transfer in triosephosphate isomerase based on the reaction path potential method.
    Wang M; Lu Z; Yang W
    J Chem Phys; 2004 Jul; 121(1):101-7. PubMed ID: 15260526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum mechanics/molecular mechanics studies of triosephosphate isomerase-catalyzed reactions: effect of geometry and tunneling on proton-transfer rate constants.
    Cui Q; Karplus M
    J Am Chem Soc; 2002 Mar; 124(12):3093-124. PubMed ID: 11902900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nuclear quantum effects on an enzyme-catalyzed reaction with reaction path potential: proton transfer in triosephosphate isomerase.
    Wang M; Lu Z; Yang W
    J Chem Phys; 2006 Mar; 124(12):124516. PubMed ID: 16599706
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantifying free energy profiles of proton transfer reactions in solution and proteins by using a diabatic FDFT mapping.
    Xiang Y; Warshel A
    J Phys Chem B; 2008 Jan; 112(3):1007-15. PubMed ID: 18166038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Revisiting the mechanism of the triosephosphate isomerase reaction: the role of the fully conserved glutamic acid 97 residue.
    Samanta M; Murthy MR; Balaram H; Balaram P
    Chembiochem; 2011 Aug; 12(12):1886-96. PubMed ID: 21671330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reaction path potential for complex systems derived from combined ab initio quantum mechanical and molecular mechanical calculations.
    Lu Z; Yang W
    J Chem Phys; 2004 Jul; 121(1):89-100. PubMed ID: 15260525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzyme Architecture: Modeling the Operation of a Hydrophobic Clamp in Catalysis by Triosephosphate Isomerase.
    Kulkarni YS; Liao Q; Petrović D; Krüger DM; Strodel B; Amyes TL; Richard JP; Kamerlin SCL
    J Am Chem Soc; 2017 Aug; 139(30):10514-10525. PubMed ID: 28683550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Practical Quantum Mechanics Molecular Mechanics Method for the Dynamical Study of Reactions in Biomolecules.
    Mendieta-Moreno JI; Marcos-Alcalde I; Trabada DG; Gómez-Puertas P; Ortega J; Mendieta J
    Adv Protein Chem Struct Biol; 2015; 100():67-88. PubMed ID: 26415841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simple model for the effect of Glu165----Asp165 mutation on the rate of catalysis in triose phosphate isomerase.
    Alagona G; Ghio C; Kollman PA
    J Mol Biol; 1986 Sep; 191(1):23-7. PubMed ID: 3025454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proton transfer in the mechanism of triosephosphate isomerase.
    Harris TK; Cole RN; Comer FI; Mildvan AS
    Biochemistry; 1998 Nov; 37(47):16828-38. PubMed ID: 9843453
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The intramolecular mechanism for the second proton transfer in triosephosphate isomerase (TIM): a QM/FE approach.
    Alagona G; Ghio C; Kollman PA
    J Comput Chem; 2003 Jan; 24(1):46-56. PubMed ID: 12483674
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing the role of highly conserved residues in triosephosphate isomerase--analysis of site specific mutants at positions 64 and 75 in the Plasmodial enzyme.
    Bandyopadhyay D; Murthy MR; Balaram H; Balaram P
    FEBS J; 2015 Oct; 282(20):3863-82. PubMed ID: 26206206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contribution of phosphate intrinsic binding energy to the enzymatic rate acceleration for triosephosphate isomerase.
    Amyes TL; O'Donoghue AC; Richard JP
    J Am Chem Soc; 2001 Nov; 123(45):11325-6. PubMed ID: 11697989
    [No Abstract]   [Full Text] [Related]  

  • 15. Theoretical analysis of intermolecular interactions of selected residues of triosephosphate isomerase from Trypanosoma cruzi with its inhibitor 3-(2-benzothiazolylthio)-1-propanesulfonic acid.
    Chávez-Calvillo R; Costas M; Hernández-Trujillo J
    Phys Chem Chem Phys; 2010 Mar; 12(9):2067-74. PubMed ID: 20165754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The structure of the thioredoxin-triosephosphate isomerase complex provides insights into the reversible glutathione-mediated regulation of triosephosphate isomerase.
    Shahul HM; Sarma SP
    Biochemistry; 2012 Jan; 51(1):533-44. PubMed ID: 22126412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computer simulation of the triosephosphate isomerase catalyzed reaction.
    Aqvist J; Fothergill M
    J Biol Chem; 1996 Apr; 271(17):10010-6. PubMed ID: 8626554
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Triosephosphate isomerase: a theoretical comparison of alternative pathways.
    Cui Q; Karplus M
    J Am Chem Soc; 2001 Mar; 123(10):2284-90. PubMed ID: 11456876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrophilic coordination catalysis: a summary of previous thought and a new angle of analysis.
    Houk RJ; Monzingo A; Anslyn EV
    Acc Chem Res; 2008 Mar; 41(3):401-10. PubMed ID: 18229891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. To build an enzyme...
    Knowles JR
    Philos Trans R Soc Lond B Biol Sci; 1991 May; 332(1263):115-21. PubMed ID: 1678530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.