These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 29513350)

  • 21. Computational design of a biologically active enzyme.
    Dwyer MA; Looger LL; Hellinga HW
    Science; 2004 Jun; 304(5679):1967-71. PubMed ID: 15218149
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Crystal structure of recombinant human triosephosphate isomerase at 2.8 A resolution. Triosephosphate isomerase-related human genetic disorders and comparison with the trypanosomal enzyme.
    Mande SC; Mainfroid V; Kalk KH; Goraj K; Martial JA; Hol WG
    Protein Sci; 1994 May; 3(5):810-21. PubMed ID: 8061610
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enzyme catalysis: not different, just better.
    Knowles JR
    Nature; 1991 Mar; 350(6314):121-4. PubMed ID: 2005961
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Catalysis and specificity in enzymes: a study of triosephosphate isomerase and comparison with methyl glyoxal synthase.
    Cui Q; Karplus M
    Adv Protein Chem; 2003; 66():315-72. PubMed ID: 14631822
    [No Abstract]   [Full Text] [Related]  

  • 25. The adaptability of the active site of trypanosomal triosephosphate isomerase as observed in the crystal structures of three different complexes.
    Noble ME; Wierenga RK; Lambeir AM; Opperdoes FR; Thunnissen AM; Kalk KH; Groendijk H; Hol WG
    Proteins; 1991; 10(1):50-69. PubMed ID: 2062828
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The folding pathway of triosephosphate isomerase.
    Zárate-Pérez F; Chánez-Cárdenas ME; Vázquez-Contreras E
    Prog Mol Biol Transl Sci; 2008; 84():251-67. PubMed ID: 19121704
    [No Abstract]   [Full Text] [Related]  

  • 27. Enzymatic catalysis of proton transfer at carbon: activation of triosephosphate isomerase by phosphite dianion.
    Amyes TL; Richard JP
    Biochemistry; 2007 May; 46(19):5841-54. PubMed ID: 17444661
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Kinetics and mechanism for enzyme-catalyzed reactions of substrate pieces.
    Cristobal JR; Richard JP
    Methods Enzymol; 2023; 685():95-126. PubMed ID: 37245916
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A convergence study of QM/MM isomerization energies with the selected size of the QM region for peptidic systems.
    Sumowski CV; Ochsenfeld C
    J Phys Chem A; 2009 Oct; 113(43):11734-41. PubMed ID: 19585981
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Precision is essential for efficient catalysis in an evolved Kemp eliminase.
    Blomberg R; Kries H; Pinkas DM; Mittl PR; Grütter MG; Privett HK; Mayo SL; Hilvert D
    Nature; 2013 Nov; 503(7476):418-21. PubMed ID: 24132235
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Introduction of a thermophile-sourced ion pair network in the fourth beta/alpha unit of a psychophile-derived triosephosphate isomerase from Methanococcoides burtonii significantly increases its kinetic thermal stability.
    Dhaunta N; Arora K; Chandrayan SK; Guptasarma P
    Biochim Biophys Acta; 2013 Jun; 1834(6):1023-33. PubMed ID: 23328412
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inclusion of ionization states of ligands in affinity calculations.
    Donnini S; Villa A; Groenhof G; Mark AE; Wierenga RK; Juffer AH
    Proteins; 2009 Jul; 76(1):138-50. PubMed ID: 19089986
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Solution-state NMR investigations of triosephosphate isomerase active site loop motion: ligand release in relation to active site loop dynamics.
    Rozovsky S; Jogl G; Tong L; McDermott AE
    J Mol Biol; 2001 Jun; 310(1):271-80. PubMed ID: 11419952
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cold Adaptation of Triosephosphate Isomerase.
    Åqvist J
    Biochemistry; 2017 Aug; 56(32):4169-4176. PubMed ID: 28731682
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Simulations of Chemical Reactions with the Frozen Domain Formulation of the Fragment Molecular Orbital Method.
    Nakata H; Fedorov DG; Nagata T; Kitaura K; Nakamura S
    J Chem Theory Comput; 2015 Jul; 11(7):3053-64. PubMed ID: 26575742
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ab initio quantum chemical and mixed quantum mechanics/molecular mechanics (QM/MM) methods for studying enzymatic catalysis.
    Friesner RA; Guallar V
    Annu Rev Phys Chem; 2005; 56():389-427. PubMed ID: 15796706
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evolution of Enzyme Function and the Development of Catalytic Efficiency: Triosephosphate Isomerase, Jeremy R. Knowles, and W. John Albery.
    Gerlt JA
    Biochemistry; 2021 Nov; 60(46):3529-3538. PubMed ID: 34015914
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Atomic resolution crystallography of a complex of triosephosphate isomerase with a reaction-intermediate analog: new insight in the proton transfer reaction mechanism.
    Alahuhta M; Wierenga RK
    Proteins; 2010 Jun; 78(8):1878-88. PubMed ID: 20235230
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gating of the active site of triose phosphate isomerase: Brownian dynamics simulations of flexible peptide loops in the enzyme.
    Wade RC; Davis ME; Luty BA; Madura JD; McCammon JA
    Biophys J; 1993 Jan; 64(1):9-15. PubMed ID: 8431552
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The equilibrium unfolding pathway of a (beta/alpha)8 barrel.
    Silverman JA; Harbury PB
    J Mol Biol; 2002 Dec; 324(5):1031-40. PubMed ID: 12470957
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.