These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 29513543)
1. Revisiting the Critical Condition for the Cassie-Wenzel Transition on Micropillar-Structured Surfaces. Fang W; Guo HY; Li B; Li Q; Feng XQ Langmuir; 2018 Apr; 34(13):3838-3844. PubMed ID: 29513543 [TBL] [Abstract][Full Text] [Related]
2. Range of applicability of the Wenzel and Cassie-Baxter equations for superhydrophobic surfaces. Erbil HY; Cansoy CE Langmuir; 2009 Dec; 25(24):14135-45. PubMed ID: 19630435 [TBL] [Abstract][Full Text] [Related]
3. Effects of hydraulic pressure on the stability and transition of wetting modes of superhydrophobic surfaces. Zheng QS; Yu Y; Zhao ZH Langmuir; 2005 Dec; 21(26):12207-12. PubMed ID: 16342993 [TBL] [Abstract][Full Text] [Related]
4. Transition of Liquid Drops on Microstructured Hygrophobic Surfaces from the Impaled Wenzel State to the "Fakir" Cassie-Baxter State. Tzitzilis D; Tsekeridis C; Ntakoumis I; Papadopoulos P Langmuir; 2024 Jul; 40(26):13422-13427. PubMed ID: 38825812 [TBL] [Abstract][Full Text] [Related]
5. Self-Cleaning of Hydrophobic Rough Surfaces by Coalescence-Induced Wetting Transition. Zhang K; Li Z; Maxey M; Chen S; Karniadakis GE Langmuir; 2019 Feb; 35(6):2431-2442. PubMed ID: 30640480 [TBL] [Abstract][Full Text] [Related]
6. How to Achieve a Monostable Cassie State on a Micropillar-Arrayed Superhydrophobic Surface. Huang L; Yao Y; Peng Z; Zhang B; Chen S J Phys Chem B; 2021 Jan; 125(3):883-894. PubMed ID: 33459010 [TBL] [Abstract][Full Text] [Related]
7. Squeezing Drops: Force Measurements of the Cassie-to-Wenzel Transition. Garcia-Gonzalez D; Corrales TP; Dacunzi M; Kappl M Langmuir; 2022 Dec; 38(48):14666-14672. PubMed ID: 36410035 [TBL] [Abstract][Full Text] [Related]
8. Controlling states of water droplets on nanostructured surfaces by design. Zhu C; Gao Y; Huang Y; Li H; Meng S; Francisco JS; Zeng XC Nanoscale; 2017 Nov; 9(46):18240-18245. PubMed ID: 29104978 [TBL] [Abstract][Full Text] [Related]
9. Wrinkled, dual-scale structures of diamond-like carbon (DLC) for superhydrophobicity. Rahmawan Y; Moon MW; Kim KS; Lee KR; Suh KY Langmuir; 2010 Jan; 26(1):484-91. PubMed ID: 19810723 [TBL] [Abstract][Full Text] [Related]
10. Wetting Dynamics of a Water Droplet on Micropillar Surfaces with Radially Varying Pitches. Kumar M; Bhardwaj R; Sahu KC Langmuir; 2020 May; 36(19):5312-5323. PubMed ID: 32356997 [TBL] [Abstract][Full Text] [Related]
11. Water droplet motion control on superhydrophobic surfaces: exploiting the Wenzel-to-Cassie transition. Liu G; Fu L; Rode AV; Craig VS Langmuir; 2011 Mar; 27(6):2595-600. PubMed ID: 21322574 [TBL] [Abstract][Full Text] [Related]
12. Wetting on Micropatterned Surfaces: Partial Penetration in the Cassie State and Wenzel Deviation Theoretically Explained. Rohrs C; Azimi A; He P Langmuir; 2019 Nov; 35(47):15421-15430. PubMed ID: 31663751 [TBL] [Abstract][Full Text] [Related]
13. Spontaneous transition of a water droplet from the Wenzel state to the Cassie state: a molecular dynamics simulation study. Wang J; Chen S; Chen D Phys Chem Chem Phys; 2015 Nov; 17(45):30533-9. PubMed ID: 26524012 [TBL] [Abstract][Full Text] [Related]
14. Time-Dependent Wetting Behavior of PDMS Surfaces with Bioinspired, Hierarchical Structures. Mishra H; Schrader AM; Lee DW; Gallo A; Chen SY; Kaufman Y; Das S; Israelachvili JN ACS Appl Mater Interfaces; 2016 Mar; 8(12):8168-74. PubMed ID: 26709928 [TBL] [Abstract][Full Text] [Related]
15. Nanostructures increase water droplet adhesion on hierarchically rough superhydrophobic surfaces. Teisala H; Tuominen M; Aromaa M; Stepien M; Mäkelä JM; Saarinen JJ; Toivakka M; Kuusipalo J Langmuir; 2012 Feb; 28(6):3138-45. PubMed ID: 22263866 [TBL] [Abstract][Full Text] [Related]
16. Patterned nonadhesive surfaces: superhydrophobicity and wetting regime transitions. Nosonovsky M; Bhushan B Langmuir; 2008 Feb; 24(4):1525-33. PubMed ID: 18072794 [TBL] [Abstract][Full Text] [Related]
17. Synthesis of superhydrophobic surfaces with Wenzel and Cassie-Baxter state: experimental evidence and theoretical insight. Zhang X; Ding B; Bian Y; Jiang D; Parkin IP Nanotechnology; 2018 Nov; 29(48):485601. PubMed ID: 30215618 [TBL] [Abstract][Full Text] [Related]
18. Preventing the Cassie-Wenzel transition using surfaces with noncommunicating roughness elements. Bahadur V; Garimella SV Langmuir; 2009 Apr; 25(8):4815-20. PubMed ID: 19260655 [TBL] [Abstract][Full Text] [Related]
19. Two types of Cassie-to-Wenzel wetting transitions on superhydrophobic surfaces during drop impact. Lee C; Nam Y; Lastakowski H; Hur JI; Shin S; Biance AL; Pirat C; Kim CJ; Ybert C Soft Matter; 2015 Jun; 11(23):4592-9. PubMed ID: 25959867 [TBL] [Abstract][Full Text] [Related]
20. Magnetically Responsive Superhydrophobic Surface with Reversibly Switchable Wettability: Fabrication, Deformation, and Switching Performance. Sun R; Wu C; Hou B; Li X; Wu J; Liu C; Chen M ACS Appl Mater Interfaces; 2023 Nov; ():. PubMed ID: 37922148 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]