BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 29513646)

  • 21. Correlations between specific patterns of spontaneous activity and stimulation efficiency in degenerated retina.
    Haselier C; Biswas S; Rösch S; Thumann G; Müller F; Walter P
    PLoS One; 2017; 12(12):e0190048. PubMed ID: 29281713
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrical stimulation of retinal neurons in epiretinal and subretinal configuration using a multicapacitor array.
    Eickenscheidt M; Jenkner M; Thewes R; Fromherz P; Zeck G
    J Neurophysiol; 2012 May; 107(10):2742-55. PubMed ID: 22357789
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Method to remove photoreceptors from whole mount retina in vitro.
    Walston ST; Chang YC; Weiland JD; Chow RH
    J Neurophysiol; 2017 Nov; 118(5):2763-2769. PubMed ID: 28855296
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A method for generating precise temporal patterns of retinal spiking using prosthetic stimulation.
    Fried SI; Hsueh HA; Werblin FS
    J Neurophysiol; 2006 Feb; 95(2):970-8. PubMed ID: 16236780
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phosphene perception and pupillary responses to sinusoidal electrostimulation - For an objective measurement of retinal function.
    Kelbsch C; Jalligampala A; Strasser T; Richter P; Stingl K; Braun C; Rathbun DL; Zrenner E; Wilhelm H; Wilhelm B; Peters T; Stingl K
    Exp Eye Res; 2018 Nov; 176():210-218. PubMed ID: 30003883
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Changes in ganglion cell physiology during retinal degeneration influence excitability by prosthetic electrodes.
    Cho A; Ratliff C; Sampath A; Weiland J
    J Neural Eng; 2016 Apr; 13(2):025001. PubMed ID: 26905177
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Feasibility study for a glutamate driven subretinal prosthesis: local subretinal application of glutamate on blind retina evoke network-mediated responses in different types of ganglion cells.
    Haq W; Dietter J; Bolz S; Zrenner E
    J Neural Eng; 2018 Aug; 15(4):045004. PubMed ID: 29916398
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Subretinal electrical stimulation reveals intact network activity in the blind mouse retina.
    Stutzki H; Helmhold F; Eickenscheidt M; Zeck G
    J Neurophysiol; 2016 Oct; 116(4):1684-1693. PubMed ID: 27486110
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electric field stimulation of bipolar cells in a degenerated retina--a theoretical study.
    Gerhardt M; Alderman J; Stett A
    IEEE Trans Neural Syst Rehabil Eng; 2010 Feb; 18(1):1-10. PubMed ID: 20071281
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Functional and structural modifications during retinal degeneration in the rd10 mouse.
    Barhoum R; Martínez-Navarrete G; Corrochano S; Germain F; Fernandez-Sanchez L; de la Rosa EJ; de la Villa P; Cuenca N
    Neuroscience; 2008 Aug; 155(3):698-713. PubMed ID: 18639614
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evoked cortical potentials after electrical stimulation of the inner retina in rabbits.
    Walter P; Heimann K
    Graefes Arch Clin Exp Ophthalmol; 2000 Apr; 238(4):315-8. PubMed ID: 10853930
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Correspondence between visual and electrical input filters of ON and OFF mouse retinal ganglion cells.
    Sekhar S; Jalligampala A; Zrenner E; Rathbun DL
    J Neural Eng; 2017 Aug; 14(4):046017. PubMed ID: 28489020
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Decoding of temporal visual information from electrically evoked retinal ganglion cell activities in photoreceptor-degenerated retinas.
    Ryu SB; Ye JH; Goo YS; Kim CH; Kim KH
    Invest Ophthalmol Vis Sci; 2011 Aug; 52(9):6271-8. PubMed ID: 21680865
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantifying the effect of light activated outer and inner retinal inhibitory pathways on glutamate release from mixed bipolar cells.
    Lipin MY; Vigh J
    Synapse; 2018 May; 72(5):e22028. PubMed ID: 29360185
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration.
    Lagali PS; Balya D; Awatramani GB; Münch TA; Kim DS; Busskamp V; Cepko CL; Roska B
    Nat Neurosci; 2008 Jun; 11(6):667-75. PubMed ID: 18432197
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrode-size dependent thresholds in subretinal neuroprosthetic stimulation.
    Corna A; Herrmann T; Zeck G
    J Neural Eng; 2018 Aug; 15(4):045003. PubMed ID: 29717707
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of a silicon retinal implant: cortical evoked potentials following focal stimulation of the rabbit retina with light and electricity.
    Nadig MN
    Clin Neurophysiol; 1999 Sep; 110(9):1545-53. PubMed ID: 10479021
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Monopolar vs. bipolar subretinal stimulation-an in vitro study.
    Gerhardt M; Groeger G; Maccarthy N
    J Neurosci Methods; 2011 Jul; 199(1):26-34. PubMed ID: 21557968
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Different combinations of GABAA and GABAC receptors confer distinct temporal properties to retinal synaptic responses.
    Lukasiewicz PD; Shields CR
    J Neurophysiol; 1998 Jun; 79(6):3157-67. PubMed ID: 9636116
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of electrically-evoked ganglion cell responses in normal and degenerate retina.
    Ye JH; Kim KH; Goo YS
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2465-8. PubMed ID: 19163202
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.