These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

638 related articles for article (PubMed ID: 29513653)

  • 1. Developmental diversification of cortical inhibitory interneurons.
    Mayer C; Hafemeister C; Bandler RC; Machold R; Batista Brito R; Jaglin X; Allaway K; Butler A; Fishell G; Satija R
    Nature; 2018 Mar; 555(7697):457-462. PubMed ID: 29513653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Early emergence of cortical interneuron diversity in the mouse embryo.
    Mi D; Li Z; Lim L; Li M; Moissidis M; Yang Y; Gao T; Hu TX; Pratt T; Price DJ; Sestan N; Marín O
    Science; 2018 Apr; 360(6384):81-85. PubMed ID: 29472441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Duration of culture and sonic hedgehog signaling differentially specify PV versus SST cortical interneuron fates from embryonic stem cells.
    Tyson JA; Goldberg EM; Maroof AM; Xu Q; Petros TJ; Anderson SA
    Development; 2015 Apr; 142(7):1267-78. PubMed ID: 25804737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic and epigenetic coordination of cortical interneuron development.
    Allaway KC; Gabitto MI; Wapinski O; Saldi G; Wang CY; Bandler RC; Wu SJ; Bonneau R; Fishell G
    Nature; 2021 Sep; 597(7878):693-697. PubMed ID: 34552240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prox1 Regulates the Subtype-Specific Development of Caudal Ganglionic Eminence-Derived GABAergic Cortical Interneurons.
    Miyoshi G; Young A; Petros T; Karayannis T; McKenzie Chang M; Lavado A; Iwano T; Nakajima M; Taniguchi H; Huang ZJ; Heintz N; Oliver G; Matsuzaki F; Machold RP; Fishell G
    J Neurosci; 2015 Sep; 35(37):12869-89. PubMed ID: 26377473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Origins of cortical interneuron subtypes.
    Xu Q; Cobos I; De La Cruz E; Rubenstein JL; Anderson SA
    J Neurosci; 2004 Mar; 24(11):2612-22. PubMed ID: 15028753
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shh activation restores interneurons and cognitive function in newborns with intraventricular haemorrhage.
    Cheng B; Sharma DR; Kumar A; Sheth H; Agyemang A; Aschner M; Zhang X; Ballabh P
    Brain; 2023 Feb; 146(2):629-644. PubMed ID: 35867870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interneuron Origins in the Embryonic Porcine Medial Ganglionic Eminence.
    Casalia ML; Li T; Ramsay H; Ross PJ; Paredes MF; Baraban SC
    J Neurosci; 2021 Apr; 41(14):3105-3119. PubMed ID: 33637558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Satb1 is an activity-modulated transcription factor required for the terminal differentiation and connectivity of medial ganglionic eminence-derived cortical interneurons.
    Close J; Xu H; De Marco García N; Batista-Brito R; Rossignol E; Rudy B; Fishell G
    J Neurosci; 2012 Dec; 32(49):17690-705. PubMed ID: 23223290
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Perspectives on the developmental origins of cortical interneuron diversity.
    Fishell G
    Novartis Found Symp; 2007; 288():21-35; discussion 35-44, 96-8. PubMed ID: 18494250
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DOT1L deletion impairs the development of cortical parvalbumin-expressing interneurons.
    Cheffer A; Garcia-Miralles M; Maier E; Akol I; Franz H; Srinivasan VSV; Vogel T
    Cereb Cortex; 2023 Sep; 33(19):10272-10285. PubMed ID: 37566909
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential effects of BMP signaling on parvalbumin and somatostatin interneuron differentiation.
    Mukhopadhyay A; McGuire T; Peng CY; Kessler JA
    Development; 2009 Aug; 136(15):2633-42. PubMed ID: 19592576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial and temporal bias in the mitotic origins of somatostatin- and parvalbumin-expressing interneuron subgroups and the chandelier subtype in the medial ganglionic eminence.
    Inan M; Welagen J; Anderson SA
    Cereb Cortex; 2012 Apr; 22(4):820-7. PubMed ID: 21693785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cortical interneuron fate determination: diverse sources for distinct subtypes?
    Xu Q; de la Cruz E; Anderson SA
    Cereb Cortex; 2003 Jun; 13(6):670-6. PubMed ID: 12764043
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cortical somatostatin long-range projection neurons and interneurons exhibit divergent developmental trajectories.
    Fisher J; Verhagen M; Long Z; Moissidis M; Yan Y; He C; Wang J; Micoli E; Alastruey CM; Moors R; Marín O; Mi D; Lim L
    Neuron; 2024 Feb; 112(4):558-573.e8. PubMed ID: 38086373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptomic and anatomic parcellation of 5-HT
    Frazer S; Prados J; Niquille M; Cadilhac C; Markopoulos F; Gomez L; Tomasello U; Telley L; Holtmaat A; Jabaudon D; Dayer A
    Nat Commun; 2017 Jan; 8():14219. PubMed ID: 28134272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Epigenetic Factor CBP Is Required for the Differentiation and Function of Medial Ganglionic Eminence-Derived Interneurons.
    Medrano-Fernández A; Delgado-Garcia JM; Del Blanco B; Llinares M; Sánchez-Campusano R; Olivares R; Gruart A; Barco A
    Mol Neurobiol; 2019 Jun; 56(6):4440-4454. PubMed ID: 30334186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Response features of parvalbumin-expressing interneurons suggest precise roles for subtypes of inhibition in visual cortex.
    Runyan CA; Schummers J; Van Wart A; Kuhlman SJ; Wilson NR; Huang ZJ; Sur M
    Neuron; 2010 Sep; 67(5):847-57. PubMed ID: 20826315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene expression in cortical interneuron precursors is prescient of their mature function.
    Batista-Brito R; Machold R; Klein C; Fishell G
    Cereb Cortex; 2008 Oct; 18(10):2306-17. PubMed ID: 18250082
    [TBL] [Abstract][Full Text] [Related]  

  • 20. p75 Neurotrophin Receptor Activation Regulates the Timing of the Maturation of Cortical Parvalbumin Interneuron Connectivity and Promotes Juvenile-like Plasticity in Adult Visual Cortex.
    Baho E; Chattopadhyaya B; Lavertu-Jolin M; Mazziotti R; Awad PN; Chehrazi P; Groleau M; Jahannault-Talignani C; Vaucher E; Ango F; Pizzorusso T; Baroncelli L; Di Cristo G
    J Neurosci; 2019 Jun; 39(23):4489-4510. PubMed ID: 30936240
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.