BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

373 related articles for article (PubMed ID: 29513703)

  • 1. Physical simulation and theoretical evolution for ground fissures triggered by underground coal mining.
    Yang JH; Yu X; Yang Y; Yang ZQ
    PLoS One; 2018; 13(3):e0192886. PubMed ID: 29513703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlled reconstruction and application research of lateral overlying strata structure in high-gas mines with thick-hard roofs for a fully-mechanized top-caving face.
    Chang Z; Wang X; Qin D; Sun Y; Yue Y; Chen X; Wang J
    Heliyon; 2024 May; 10(10):e30705. PubMed ID: 38778987
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Research on a Space-Time Continuous Sensing System for Overburden Deformation and Failure during Coal Mining.
    Cheng G; Wang Z; Shi B; Zhu W; Li T
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study on key parameters of buckling deformation instability and fracture of rock beams and asymmetric distribution law of stope stress.
    Shi Z; Zhao H; Qin B; Liang B; Li G; Liu X; Jia L
    PLoS One; 2024; 19(6):e0305244. PubMed ID: 38861579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Height of overburden fracture based on key strata theory in longwall face.
    Lu W; He C; Zhang X
    PLoS One; 2020; 15(1):e0228264. PubMed ID: 31978195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study of water-conducting fractured zone development law and assessment method in longwall mining of shallow coal seam.
    Li X; Ji D; Han P; Li Q; Zhao H; He F
    Sci Rep; 2022 May; 12(1):7994. PubMed ID: 35568720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Overburden failure and water-sand mixture outburst conditions of weakly consolidated overlying strata in Dananhu No.7 coal mine.
    Zhu J; Li W; Teng B; Lu Q; Li D; Li L
    Sci Rep; 2024 Apr; 14(1):8439. PubMed ID: 38600225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fractal characteristics of overburden fissures in shallow thick coal seam mining in loess gully areas.
    Li J; Guo X; Wu X; Chen S; Zhang N
    PLoS One; 2022; 17(9):e0274209. PubMed ID: 36166471
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developmental Features, Influencing Factors, and Formation Mechanism of Underground Mining-Induced Ground Fissure Disasters in China: A Review.
    Li Y; Liu H; Su L; Chen S; Zhu X; Zhang P
    Int J Environ Res Public Health; 2023 Feb; 20(4):. PubMed ID: 36834206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subsidence prediction of overburden strata and ground surface in shallow coal seam mining.
    Cao J; Huang Q; Guo L
    Sci Rep; 2021 Sep; 11(1):18972. PubMed ID: 34556745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study on the damage characteristics of overburden of mining roof in deeply buried coal seam.
    Long T; Hou E; Xie X; Fan Z; Tan E
    Sci Rep; 2022 Jul; 12(1):11141. PubMed ID: 35778594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative analysis of permeability model construction and risk fields evaluation by roof cutting along the gob in a coal mine.
    Liu J; Li D; Chen X; Wang L; Wang S
    Environ Sci Pollut Res Int; 2024 Jan; 31(5):7073-7091. PubMed ID: 38157177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting the distribution of ground fissures and water-conducted fissures induced by coal mining: a case study.
    Zhao K; Xu N; Mei G; Tian H
    Springerplus; 2016; 5(1):977. PubMed ID: 27429887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Land subsidence prediction in coal mining using machine learning models and optimization techniques.
    Jahanmiri S; Noorian-Bidgoli M
    Environ Sci Pollut Res Int; 2024 May; 31(22):31942-31966. PubMed ID: 38639906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The analysis and application of granular backfill material to reduce surface subsidence in China's northwest coal mining area.
    Bai E; Guo W; Tan Y; Yang D
    PLoS One; 2018; 13(7):e0201112. PubMed ID: 30036401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Similarity Simulation on the Movement Characteristics of Surrounding Rock and Floor Stress Distribution for Large-Dip Coal Seam.
    Cao W; Liu H; Hang Y; Wang H; Li G
    Sensors (Basel); 2022 Apr; 22(7):. PubMed ID: 35408375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Breaking law of overburden rock and key mining technology for narrow coal pillar working face in isolated island.
    Feng D; Zhenhua L; Songtao L; Xiaolei L; Guodong L; Xuan F; Hao R; Zhengzheng C
    Sci Rep; 2024 Jun; 14(1):13045. PubMed ID: 38844674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical simulation on fracturing behaviour of hard roofs at different levels during extra-thick coal seam mining.
    Gao R; Huo B; Xia H; Meng X
    R Soc Open Sci; 2020 Jan; 7(1):191383. PubMed ID: 32218957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution mechanism of water-conducting fractures in overburden under the influence of water-rich fault in underground coal mining.
    Zhengzheng C; Xiangqian Y; Zhenhua L; Feng D
    Sci Rep; 2024 Mar; 14(1):5081. PubMed ID: 38429309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Field Monitoring Experiment of the Roof Strata Movement in Coal Mining Based on DFOS.
    Hu T; Hou G; Li Z
    Sensors (Basel); 2020 Feb; 20(5):. PubMed ID: 32121274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.