These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 29513927)

  • 1. Comparative Protein Interaction Network Analysis Identifies Shared and Distinct Functions for the Human ROCO Proteins.
    Tomkins JE; Dihanich S; Beilina A; Ferrari R; Ilacqua N; Cookson MR; Lewis PA; Manzoni C
    Proteomics; 2018 May; 18(10):e1700444. PubMed ID: 29513927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In silico and Wet Bench Interactomics Sheds Light on the Similitudes and Differences between Human ROCO Proteins.
    Taymans JM; Chartier-Harlin MC
    Proteomics; 2018 Jul; 18(13):e1800103. PubMed ID: 29791783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Homo- and heterodimerization of ROCO kinases: LRRK2 kinase inhibition by the LRRK2 ROCO fragment.
    Klein CL; Rovelli G; Springer W; Schall C; Gasser T; Kahle PJ
    J Neurochem; 2009 Nov; 111(3):703-15. PubMed ID: 19712061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GTP binding controls complex formation by the human ROCO protein MASL1.
    Dihanich S; Civiero L; Manzoni C; Mamais A; Bandopadhyay R; Greggio E; Lewis PA
    FEBS J; 2014 Jan; 281(1):261-74. PubMed ID: 24286120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Revisiting the Roco G-protein cycle.
    Terheyden S; Ho FY; Gilsbach BK; Wittinghofer A; Kortholt A
    Biochem J; 2015 Jan; 465(1):139-47. PubMed ID: 25317655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Roco Proteins: GTPases with a Baroque Structure and Mechanism.
    Wauters L; Versées W; Kortholt A
    Int J Mol Sci; 2019 Jan; 20(1):. PubMed ID: 30609797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biochemical and kinetic properties of the complex Roco G-protein cycle.
    Wauters L; Terheyden S; Gilsbach BK; Leemans M; Athanasopoulos PS; Guaitoli G; Wittinghofer A; Gloeckner CJ; Versées W; Kortholt A
    Biol Chem; 2018 Nov; 399(12):1447-1456. PubMed ID: 30067506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human leucine-rich repeat kinase 1 and 2: intersecting or unrelated functions?
    Civiero L; Bubacco L
    Biochem Soc Trans; 2012 Oct; 40(5):1095-101. PubMed ID: 22988872
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The function of ROCO proteins in health and disease.
    Lewis PA
    Biol Cell; 2009 Mar; 101(3):183-91. PubMed ID: 19152505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Roco Proteins and the Parkinson's Disease-Associated LRRK2.
    Liao J; Hoang QQ
    Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30562929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Roco protein family: a functional perspective.
    Marín I; van Egmond WN; van Haastert PJ
    FASEB J; 2008 Sep; 22(9):3103-10. PubMed ID: 18523161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Parkinson disease gene LRRK2: evolutionary and structural insights.
    Marín I
    Mol Biol Evol; 2006 Dec; 23(12):2423-33. PubMed ID: 16966681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential protein-protein interactions of LRRK1 and LRRK2 indicate roles in distinct cellular signaling pathways.
    Reyniers L; Del Giudice MG; Civiero L; Belluzzi E; Lobbestael E; Beilina A; Arrigoni G; Derua R; Waelkens E; Li Y; Crosio C; Iaccarino C; Cookson MR; Baekelandt V; Greggio E; Taymans JM
    J Neurochem; 2014 Oct; 131(2):239-50. PubMed ID: 24947832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ROCO kinase activity is controlled by internal GTPase function.
    Weiss B
    Sci Signal; 2008 Jun; 1(23):pe27. PubMed ID: 18544747
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The unconventional G-protein cycle of LRRK2 and Roco proteins.
    Terheyden S; Nederveen-Schippers LM; Kortholt A
    Biochem Soc Trans; 2016 Dec; 44(6):1611-1616. PubMed ID: 27913669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural biology of the LRRK2 GTPase and kinase domains: implications for regulation.
    Gilsbach BK; Kortholt A
    Front Mol Neurosci; 2014; 7():32. PubMed ID: 24847205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Parkinson's disease-associated protein, leucine-rich repeat kinase 2 (LRRK2), is an authentic GTPase that stimulates kinase activity.
    Guo L; Gandhi PN; Wang W; Petersen RB; Wilson-Delfosse AL; Chen SG
    Exp Cell Res; 2007 Oct; 313(16):3658-70. PubMed ID: 17706965
    [TBL] [Abstract][Full Text] [Related]  

  • 18. LRRK1 protein kinase activity is stimulated upon binding of GTP to its Roc domain.
    Korr D; Toschi L; Donner P; Pohlenz HD; Kreft B; Weiss B
    Cell Signal; 2006 Jun; 18(6):910-20. PubMed ID: 16243488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biochemical and functional characterization of the ROC domain of DAPK establishes a new paradigm of GTP regulation in ROCO proteins.
    Bialik S; Kimchi A
    Biochem Soc Trans; 2012 Oct; 40(5):1052-7. PubMed ID: 22988864
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformational heterogeneity of the Roc domains in C. tepidum Roc-COR and implications for human LRRK2 Parkinson mutations.
    Rudi K; Ho FY; Gilsbach BK; Pots H; Wittinghofer A; Kortholt A; Klare JP
    Biosci Rep; 2015 Aug; 35(5):. PubMed ID: 26310572
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.