BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 29514452)

  • 1. Heliobacteria Reveal Fermentation As a Key Pathway for Mercury Reduction in Anoxic Environments.
    Grégoire DS; Lavoie NC; Poulain AJ
    Environ Sci Technol; 2018 Apr; 52(7):4145-4153. PubMed ID: 29514452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduced sulphur sources favour Hg
    Lavoie NC; Grégoire DS; Stenzler BR; Poulain AJ
    Geobiology; 2020 Jan; 18(1):70-79. PubMed ID: 31536173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stable Isotope Fractionation Reveals Similar Atomic-Level Controls during Aerobic and Anaerobic Microbial Hg Transformation Pathways.
    Grégoire DS; Janssen SE; Lavoie NC; Tate MT; Poulain AJ
    Appl Environ Microbiol; 2021 Aug; 87(18):e0067821. PubMed ID: 34232740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy metabolism of Heliobacterium modesticaldum during phototrophic and chemotrophic growth.
    Tang KH; Yue H; Blankenship RE
    BMC Microbiol; 2010 May; 10():150. PubMed ID: 20497547
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mercury reduction and oxidation by reduced natural organic matter in anoxic environments.
    Zheng W; Liang L; Gu B
    Environ Sci Technol; 2012 Jan; 46(1):292-9. PubMed ID: 22107154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel reduction of mercury (II) by mercury-sensitive dissimilatory metal reducing bacteria.
    Wiatrowski HA; Ward PM; Barkay T
    Environ Sci Technol; 2006 Nov; 40(21):6690-6. PubMed ID: 17144297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anaerobic Mercury Methylation and Demethylation by Geobacter bemidjiensis Bem.
    Lu X; Liu Y; Johs A; Zhao L; Wang T; Yang Z; Lin H; Elias DA; Pierce EM; Liang L; Barkay T; Gu B
    Environ Sci Technol; 2016 Apr; 50(8):4366-73. PubMed ID: 27019098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of biogeochemical controls on the formation, uptake and accumulation of methylmercury in rice paddies in the vicinity of a coal-fired power plant and a municipal solid waste incinerator in Taiwan.
    Su YB; Chang WC; Hsi HC; Lin CC
    Chemosphere; 2016 Jul; 154():375-384. PubMed ID: 27070857
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mercury Reduction by Nanoparticulate Vivianite.
    Etique M; Bouchet S; Byrne JM; ThomasArrigo LK; Kaegi R; Kretzschmar R
    Environ Sci Technol; 2021 Mar; 55(5):3399-3407. PubMed ID: 33554594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coupled mercury-cell sorption, reduction, and oxidation on methylmercury production by Geobacter sulfurreducens PCA.
    Lin H; Morrell-Falvey JL; Rao B; Liang L; Gu B
    Environ Sci Technol; 2014 Oct; 48(20):11969-76. PubMed ID: 25268220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mercury Reduction and Methyl Mercury Degradation by the Soil Bacterium Xanthobacter autotrophicus Py2.
    Petrus AK; Rutner C; Liu S; Wang Y; Wiatrowski HA
    Appl Environ Microbiol; 2015 Nov; 81(22):7833-8. PubMed ID: 26341208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Total mercury, methylmercury and selenium in mercury polluted areas in the province Guizhou, China.
    Horvat M; Nolde N; Fajon V; Jereb V; Logar M; Lojen S; Jacimovic R; Falnoga I; Liya Q; Faganeli J; Drobne D
    Sci Total Environ; 2003 Mar; 304(1-3):231-56. PubMed ID: 12663187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Degradation of methylmercury into Hg(0) by the oxidation of iron(II) minerals.
    Xie F; Yuan Q; Meng Y; Luan F
    Water Res; 2024 Jun; 256():121645. PubMed ID: 38653093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insights into heliobacterial photosynthesis and physiology from the genome of Heliobacterium modesticaldum.
    Sattley WM; Blankenship RE
    Photosynth Res; 2010 Jun; 104(2-3):113-22. PubMed ID: 20130998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling Mercury in Proteins.
    Parks JM; Smith JC
    Methods Enzymol; 2016; 578():103-22. PubMed ID: 27497164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toward Bioremediation of Methylmercury Using Silica Encapsulated Escherichia coli Harboring the mer Operon.
    Kane AL; Al-Shayeb B; Holec PV; Rajan S; Le Mieux NE; Heinsch SC; Psarska S; Aukema KG; Sarkar CA; Nater EA; Gralnick JA
    PLoS One; 2016; 11(1):e0147036. PubMed ID: 26761437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The enhancement and inhibition of mercury reduction by natural organic matter in the presence of Shewanella oneidensis MR-1.
    Lee S; Kim DH; Kim KW
    Chemosphere; 2018 Mar; 194():515-522. PubMed ID: 29241125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A little bit of light goes a long way: the role of phototrophs on mercury cycling.
    Grégoire DS; Poulain AJ
    Metallomics; 2014 Mar; 6(3):396-407. PubMed ID: 24531738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of soil properties on production and bioaccumulation of methylmercury in rice paddies at a mercury mining area, China.
    Yin D; He T; Yin R; Zeng L
    J Environ Sci (China); 2018 Jun; 68():194-205. PubMed ID: 29908739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of aqueous speciation and cellular ligand binding on the biotransformation and bioavailability of methylmercury in mercury-resistant bacteria.
    Ndu U; Barkay T; Schartup AT; Mason RP; Reinfelder JR
    Biodegradation; 2016 Feb; 27(1):29-36. PubMed ID: 26693726
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.