BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 2951477)

  • 1. The effects of temperature and pH on the contractile properties of skinned muscle fibres from the terrapin, Pseudemys scripta elegans.
    Mutungi G; Johnston IA
    J Exp Biol; 1987 Mar; 128():87-105. PubMed ID: 2951477
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differences in temperature dependence of muscle contractile properties and myofibrillar ATPase activity in a cold-temperature fish.
    Johnston IA; Sidell BD
    J Exp Biol; 1984 Jul; 111():179-89. PubMed ID: 6238119
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The pCa-tension and force-velocity characteristics of skinned fibres isolated from fish fast and slow muscles.
    Altringham JD; Johnston IA
    J Physiol; 1982 Dec; 333():421-49. PubMed ID: 7182472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal dependence of contractile properties of skeletal muscle from the lizard Sceloporus occidentalis with comments on methods for fitting and comparing force-velocity curves.
    Marsh RL; Bennett AF
    J Exp Biol; 1986 Nov; 126():63-77. PubMed ID: 3806003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stable maintenance heat rate and contractile properties of different single muscle fibres from Xenopus laevis at 20 degrees C.
    Elzinga G; Lännergren J; Stienen GJ
    J Physiol; 1987 Dec; 393():399-412. PubMed ID: 3446801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The dependence of force and shortening velocity on substrate concentration in skinned muscle fibres from Rana temporaria.
    Ferenczi MA; Goldman YE; Simmons RM
    J Physiol; 1984 May; 350():519-43. PubMed ID: 6611405
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Force-velocity characteristics and metabolism of carp muscle fibres following temperature acclimation.
    Johnston IA; Sidell BD; Driedzic WR
    J Exp Biol; 1985 Nov; 119():239-49. PubMed ID: 4093757
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Power output and force-velocity relationship of red and white muscle fibres from the Pacific blue marlin (Makaira nigricans).
    Johnston IA; Salamonski J
    J Exp Biol; 1984 Jul; 111():171-7. PubMed ID: 6491589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Force generation examined by laser temperature-jumps in shortening and lengthening mammalian (rabbit psoas) muscle fibres.
    Ranatunga KW; Coupland ME; Pinniger GJ; Roots H; Offer GW
    J Physiol; 2007 Nov; 585(Pt 1):263-77. PubMed ID: 17916609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differences in maximum velocity of shortening along single muscle fibres of the frog.
    Edman KA; Reggiani C; te Kronnie G
    J Physiol; 1985 Aug; 365():147-63. PubMed ID: 3875712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal dependence of force-velocity relation of lamprey live striated muscle fibres.
    Sobol CV; Nasledov GA
    Gen Physiol Biophys; 1994 Jun; 13(3):215-24. PubMed ID: 7835682
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The velocity of unloaded shortening and its relation to sarcomere length and isometric force in vertebrate muscle fibres.
    Edman KA
    J Physiol; 1979 Jun; 291():143-59. PubMed ID: 314510
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The maximum speed of shortening in living and skinned frog muscle fibres.
    Julian FJ; Rome LC; Stephenson DG; Striz S
    J Physiol; 1986 Jan; 370():181-99. PubMed ID: 3485715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature-dependent calcium sensitivity changes in skinned muscle fibres of rat and toad.
    Stephenson DG; Williams DA
    J Physiol; 1985 Mar; 360():1-12. PubMed ID: 3921690
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in ATPase and SDH reactions of the rat extrafusal and intrafusal muscle fibres after preincubations at different pH.
    Soukup T; Vydra J; Cerný M
    Histochemistry; 1979 Feb; 60(1):71-84. PubMed ID: 34586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The force-velocity relation of isolated twitch and slow muscle fibres of Xenopus laevis.
    Lännergren J
    J Physiol; 1978 Oct; 283():501-21. PubMed ID: 722588
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The inhibition of rabbit skeletal muscle contraction by hydrogen ions and phosphate.
    Cooke R; Franks K; Luciani GB; Pate E
    J Physiol; 1988 Jan; 395():77-97. PubMed ID: 2842489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Some properties of the contractile system and sarcoplasmic reticulum of skinned slow fibres from Xenopus muscle.
    Horiuti K
    J Physiol; 1986 Apr; 373():1-23. PubMed ID: 2427691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low cell pH depresses peak power in rat skeletal muscle fibres at both 30 degrees C and 15 degrees C: implications for muscle fatigue.
    Knuth ST; Dave H; Peters JR; Fitts RH
    J Physiol; 2006 Sep; 575(Pt 3):887-99. PubMed ID: 16809373
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The consequences of fibre heterogeneity on the force-velocity relation of skeletal muscle.
    Josephson RK; Edman KA
    Acta Physiol Scand; 1988 Mar; 132(3):341-52. PubMed ID: 3265837
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.