BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 29514861)

  • 1. Genomic Prediction from Multiple-Trait Bayesian Regression Methods Using Mixture Priors.
    Cheng H; Kizilkaya K; Zeng J; Garrick D; Fernando R
    Genetics; 2018 May; 209(1):89-103. PubMed ID: 29514861
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Genomic Bayesian Multi-trait and Multi-environment Model.
    Montesinos-López OA; Montesinos-López A; Crossa J; Toledo FH; Pérez-Hernández O; Eskridge KM; Rutkoski J
    G3 (Bethesda); 2016 Sep; 6(9):2725-44. PubMed ID: 27342738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Multiple-Trait Bayesian Variable Selection Regression Method for Integrating Phenotypic Causal Networks in Genome-Wide Association Studies.
    Wang Z; Chapman D; Morota G; Cheng H
    G3 (Bethesda); 2020 Dec; 10(12):4439-4448. PubMed ID: 33020191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of alternative approaches to single-trait genomic prediction using genotyped and non-genotyped Hanwoo beef cattle.
    Lee J; Cheng H; Garrick D; Golden B; Dekkers J; Park K; Lee D; Fernando R
    Genet Sel Evol; 2017 Jan; 49(1):2. PubMed ID: 28093065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Bayesian random regression method using mixture priors for genome-enabled analysis of time-series high-throughput phenotyping data.
    Qu J; Morota G; Cheng H
    Plant Genome; 2022 Sep; 15(3):e20228. PubMed ID: 35904052
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving accuracy of genomic prediction by genetic architecture based priors in a Bayesian model.
    Gao N; Li J; He J; Xiao G; Luo Y; Zhang H; Chen Z; Zhang Z
    BMC Genet; 2015 Oct; 16():120. PubMed ID: 26466667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-Trait and Multiple-Trait Genomic Prediction From Multi-Class Bayesian Alphabet Models Using Biological Information.
    Wang Z; Cheng H
    Front Genet; 2021; 12():717457. PubMed ID: 34707638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variable selection models for genomic selection using whole-genome sequence data and singular value decomposition.
    Meuwissen THE; Indahl UG; Ødegård J
    Genet Sel Evol; 2017 Dec; 49(1):94. PubMed ID: 29281962
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A multi-trait Bayesian method for mapping QTL and genomic prediction.
    Kemper KE; Bowman PJ; Hayes BJ; Visscher PM; Goddard ME
    Genet Sel Evol; 2018 Mar; 50(1):10. PubMed ID: 29571285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of prior specifications in a shrinkage-inducing Bayesian model for quantitative trait mapping and genomic prediction.
    Knürr T; Läärä E; Sillanpää MJ
    Genet Sel Evol; 2013 Jul; 45(1):24. PubMed ID: 23834140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Bayesian Poisson-lognormal Model for Count Data for Multiple-Trait Multiple-Environment Genomic-Enabled Prediction.
    Montesinos-López OA; Montesinos-López A; Crossa J; Toledo FH; Montesinos-López JC; Singh P; Juliana P; Salinas-Ruiz J
    G3 (Bethesda); 2017 May; 7(5):1595-1606. PubMed ID: 28364037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Multiple-Trait Bayesian Lasso for Genome-Enabled Analysis and Prediction of Complex Traits.
    Gianola D; Fernando RL
    Genetics; 2020 Feb; 214(2):305-331. PubMed ID: 31879318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An R Package for Bayesian Analysis of Multi-environment and Multi-trait Multi-environment Data for Genome-Based Prediction.
    Montesinos-López OA; Montesinos-López A; Luna-Vázquez FJ; Toledo FH; Pérez-Rodríguez P; Lillemo M; Crossa J
    G3 (Bethesda); 2019 May; 9(5):1355-1369. PubMed ID: 30819822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accuracy of prediction of simulated polygenic phenotypes and their underlying quantitative trait loci genotypes using real or imputed whole-genome markers in cattle.
    Hassani S; Saatchi M; Fernando RL; Garrick DJ
    Genet Sel Evol; 2015 Dec; 47():99. PubMed ID: 26698091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genomic prediction based on data from three layer lines: a comparison between linear methods.
    Calus MP; Huang H; Vereijken A; Visscher J; Ten Napel J; Windig JJ
    Genet Sel Evol; 2014 Oct; 46(1):57. PubMed ID: 25927219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Accuracy and Bias of Single-Step Genomic Prediction for Populations Under Selection.
    Hsu WL; Garrick DJ; Fernando RL
    G3 (Bethesda); 2017 Aug; 7(8):2685-2694. PubMed ID: 28642364
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genomic Prediction Using Multi-trait Weighted GBLUP Accounting for Heterogeneous Variances and Covariances Across the Genome.
    Karaman E; Lund MS; Anche MT; Janss L; Su G
    G3 (Bethesda); 2018 Nov; 8(11):3549-3558. PubMed ID: 30194089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of Genomic Selection Models to Predict Flowering Time and Spike Grain Number in Two Hexaploid Wheat Doubled Haploid Populations.
    Thavamanikumar S; Dolferus R; Thumma BR
    G3 (Bethesda); 2015 Jul; 5(10):1991-8. PubMed ID: 26206349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Empirical and deterministic accuracies of across-population genomic prediction.
    Wientjes YC; Veerkamp RF; Bijma P; Bovenhuis H; Schrooten C; Calus MP
    Genet Sel Evol; 2015 Feb; 47(1):5. PubMed ID: 25885467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bayesian methods for jointly estimating genomic breeding values of one continuous and one threshold trait.
    Wang C; Li X; Qian R; Su G; Zhang Q; Ding X
    PLoS One; 2017; 12(4):e0175448. PubMed ID: 28410429
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.