BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 29514861)

  • 21. Application of a Bayesian dominance model improves power in quantitative trait genome-wide association analysis.
    Bennewitz J; Edel C; Fries R; Meuwissen TH; Wellmann R
    Genet Sel Evol; 2017 Jan; 49(1):7. PubMed ID: 28088170
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genomic prediction using an iterative conditional expectation algorithm for a fast BayesC-like model.
    Dong L; Wang Z
    Genetica; 2018 Oct; 146(4-5):361-368. PubMed ID: 29948517
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Variational Bayes Genomic-Enabled Prediction Model with Genotype × Environment Interaction.
    Montesinos-López OA; Montesinos-López A; Crossa J; Montesinos-López JC; Luna-Vázquez FJ; Salinas-Ruiz J; Herrera-Morales JR; Buenrostro-Mariscal R
    G3 (Bethesda); 2017 Jun; 7(6):1833-1853. PubMed ID: 28391241
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multiple-trait genomic selection methods increase genetic value prediction accuracy.
    Jia Y; Jannink JL
    Genetics; 2012 Dec; 192(4):1513-22. PubMed ID: 23086217
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Novel Bayesian Networks for Genomic Prediction of Developmental Traits in Biomass Sorghum.
    Dos Santos JPR; Fernandes SB; McCoy S; Lozano R; Brown PJ; Leakey ADB; Buckler ES; Garcia AAF; Gore MA
    G3 (Bethesda); 2020 Feb; 10(2):769-781. PubMed ID: 31852730
    [TBL] [Abstract][Full Text] [Related]  

  • 26. GWAS by GBLUP: Single and Multimarker EMMAX and Bayes Factors, with an Example in Detection of a Major Gene for Horse Gait.
    Legarra A; Ricard A; Varona L
    G3 (Bethesda); 2018 Jul; 8(7):2301-2308. PubMed ID: 29748199
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interpretable artificial neural networks incorporating Bayesian alphabet models for genome-wide prediction and association studies.
    Zhao T; Fernando R; Cheng H
    G3 (Bethesda); 2021 Sep; 11(10):. PubMed ID: 34499126
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genomic prediction for tick resistance in Braford and Hereford cattle.
    Cardoso FF; Gomes CC; Sollero BP; Oliveira MM; Roso VM; Piccoli ML; Higa RH; Yokoo MJ; Caetano AR; Aguilar I
    J Anim Sci; 2015 Jun; 93(6):2693-705. PubMed ID: 26115257
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Exploiting biological priors and sequence variants enhances QTL discovery and genomic prediction of complex traits.
    MacLeod IM; Bowman PJ; Vander Jagt CJ; Haile-Mariam M; Kemper KE; Chamberlain AJ; Schrooten C; Hayes BJ; Goddard ME
    BMC Genomics; 2016 Feb; 17():144. PubMed ID: 26920147
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A computationally efficient algorithm for genomic prediction using a Bayesian model.
    Wang T; Chen YP; Goddard ME; Meuwissen TH; Kemper KE; Hayes BJ
    Genet Sel Evol; 2015 Apr; 47(1):34. PubMed ID: 25926276
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Bayesian Genomic Multi-output Regressor Stacking Model for Predicting Multi-trait Multi-environment Plant Breeding Data.
    Montesinos-López OA; Montesinos-López A; Crossa J; Cuevas J; Montesinos-López JC; Gutiérrez ZS; Lillemo M; Philomin J; Singh R
    G3 (Bethesda); 2019 Oct; 9(10):3381-3393. PubMed ID: 31427455
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of Bayesian models to estimate direct genomic values in multi-breed commercial beef cattle.
    Rolf MM; Garrick DJ; Fountain T; Ramey HR; Weaber RL; Decker JE; Pollak EJ; Schnabel RD; Taylor JF
    Genet Sel Evol; 2015 Apr; 47(1):23. PubMed ID: 25884158
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Exploring the areas of applicability of whole-genome prediction methods for Asian rice (Oryza sativa L.).
    Onogi A; Ideta O; Inoshita Y; Ebana K; Yoshioka T; Yamasaki M; Iwata H
    Theor Appl Genet; 2015 Jan; 128(1):41-53. PubMed ID: 25341369
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Predictive ability of genome-assisted statistical models under various forms of gene action.
    Momen M; Mehrgardi AA; Sheikhi A; Kranis A; Tusell L; Morota G; Rosa GJM; Gianola D
    Sci Rep; 2018 Aug; 8(1):12309. PubMed ID: 30120288
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bayesian Genomic Prediction with Genotype × Environment Interaction Kernel Models.
    Cuevas J; Crossa J; Montesinos-López OA; Burgueño J; Pérez-Rodríguez P; de Los Campos G
    G3 (Bethesda); 2017 Jan; 7(1):41-53. PubMed ID: 27793970
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of number of training generations on genomic prediction for various traits in a layer chicken population.
    Weng Z; Wolc A; Shen X; Fernando RL; Dekkers JC; Arango J; Settar P; Fulton JE; O'Sullivan NP; Garrick DJ
    Genet Sel Evol; 2016 Mar; 48():22. PubMed ID: 26992471
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genomic prediction of genetic merit using LD-based haplotypes in the Nordic Holstein population.
    Cuyabano BC; Su G; Lund MS
    BMC Genomics; 2014 Dec; 15(1):1171. PubMed ID: 25539631
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Accuracies of direct genomic breeding values in Hereford beef cattle using national or international training populations.
    Saatchi M; Ward J; Garrick DJ
    J Anim Sci; 2013 Apr; 91(4):1538-51. PubMed ID: 23345550
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genomic prediction based on data from three layer lines using non-linear regression models.
    Huang H; Windig JJ; Vereijken A; Calus MP
    Genet Sel Evol; 2014 Nov; 46(1):75. PubMed ID: 25374005
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Using selection index theory to estimate consistency of multi-locus linkage disequilibrium across populations.
    Wientjes YC; Veerkamp RF; Calus MP
    BMC Genet; 2015 Jul; 16():87. PubMed ID: 26187501
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.