BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1170 related articles for article (PubMed ID: 29514911)

  • 1. A Stem-Loop Structure in
    Xu Y; Ju HJ; DeBlasio S; Carino EJ; Johnson R; MacCoss MJ; Heck M; Miller WA; Gray SM
    J Virol; 2018 Jun; 92(11):. PubMed ID: 29514911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An aromatic amino acid and associated helix in the C-terminus of the potato leafroll virus minor capsid protein regulate systemic infection and symptom expression.
    Xu Y; Da Silva WL; Qian Y; Gray SM
    PLoS Pathog; 2018 Nov; 14(11):e1007451. PubMed ID: 30440046
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complex and simple translational readthrough signals in pea enation mosaic virus 1 and potato leafroll virus, respectively.
    Chkuaseli T; White KA
    PLoS Pathog; 2022 Sep; 18(9):e1010888. PubMed ID: 36174104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Small deletions in the potato leafroll virus readthrough protein affect particle morphology, aphid transmission, virus movement and accumulation.
    Peter KA; Liang D; Palukaitis P; Gray SM
    J Gen Virol; 2008 Aug; 89(Pt 8):2037-2045. PubMed ID: 18632976
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potato leafroll virus structural proteins manipulate overlapping, yet distinct protein interaction networks during infection.
    DeBlasio SL; Johnson R; Sweeney MM; Karasev A; Gray SM; MacCoss MJ; Cilia M
    Proteomics; 2015 Jun; 15(12):2098-112. PubMed ID: 25787689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cross-linking measurements of the Potato leafroll virus reveal protein interaction topologies required for virion stability, aphid transmission, and virus-plant interactions.
    Chavez JD; Cilia M; Weisbrod CR; Ju HJ; Eng JK; Gray SM; Bruce JE
    J Proteome Res; 2012 May; 11(5):2968-81. PubMed ID: 22390342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Point mutations in the potato leafroll virus major capsid protein alter virion stability and aphid transmission.
    Kaplan IB; Lee L; Ripoll DR; Palukaitis P; Gildow F; Gray SM
    J Gen Virol; 2007 Jun; 88(Pt 6):1821-1830. PubMed ID: 17485544
    [TBL] [Abstract][Full Text] [Related]  

  • 8. UGA stop codon readthrough to translate intergenic region of Plautia stali intestine virus does not require RNA structures forming internal ribosomal entry site.
    Kamoshita N; Tominaga SI
    RNA; 2019 Jan; 25(1):90-104. PubMed ID: 30337458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nucleotide sequence of potato leafroll luteovirus RNA.
    Mayo MA; Robinson DJ; Jolly CA; Hyman L
    J Gen Virol; 1989 May; 70 ( Pt 5)():1037-51. PubMed ID: 2732710
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atypical RNA Elements Modulate Translational Readthrough in Tobacco Necrosis Virus D.
    Newburn LR; White KA
    J Virol; 2017 Apr; 91(8):. PubMed ID: 28148800
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of the genome of potato leafroll virus: readthrough of the coat protein termination codon in vivo.
    Bahner I; Lamb J; Mayo MA; Hay RT
    J Gen Virol; 1990 Oct; 71 ( Pt 10)():2251-6. PubMed ID: 2230732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Local and distant sequences are required for efficient readthrough of the barley yellow dwarf virus PAV coat protein gene stop codon.
    Brown CM; Dinesh-Kumar SP; Miller WA
    J Virol; 1996 Sep; 70(9):5884-92. PubMed ID: 8709208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elements regulating Potato leafroll virus sgRNA1 translation are located within the coding sequences of the coat protein and read-through domain.
    Łoniewska-Lwowska A; Chełstowska S; Zagórski-Ostoja W; Pałucha A
    Acta Biochim Pol; 2009; 56(4):619-25. PubMed ID: 19838400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A sequence required for -1 ribosomal frameshifting located four kilobases downstream of the frameshift site.
    Paul CP; Barry JK; Dinesh-Kumar SP; Brault V; Miller WA
    J Mol Biol; 2001 Jul; 310(5):987-99. PubMed ID: 11502008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequencing and phylogenetic analysis of tobacco virus 2, a polerovirus from Nicotiana tabacum.
    Zhou B; Wang F; Zhang X; Zhang L; Lin H
    Arch Virol; 2017 Jul; 162(7):2159-2162. PubMed ID: 28342033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Sequence-Independent, Unstructured Internal Ribosome Entry Site Is Responsible for Internal Expression of the Coat Protein of Turnip Crinkle Virus.
    May J; Johnson P; Saleem H; Simon AE
    J Virol; 2017 Apr; 91(8):. PubMed ID: 28179526
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insights in luteovirid structural biology guided by chemical cross-linking and high resolution mass spectrometry.
    Alexander MM; Mohr JP; DeBlasio SL; Chavez JD; Ziegler-Graff V; Brault V; Bruce JE; Heck MC
    Virus Res; 2017 Sep; 241():42-52. PubMed ID: 28502641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insights into the polerovirus-plant interactome revealed by coimmunoprecipitation and mass spectrometry.
    DeBlasio SL; Johnson R; Mahoney J; Karasev A; Gray SM; MacCoss MJ; Cilia M
    Mol Plant Microbe Interact; 2015 Apr; 28(4):467-81. PubMed ID: 25496593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Eukaryotic translational coupling in UAAUG stop-start codons for the bicistronic RNA translation of the non-long terminal repeat retrotransposon SART1.
    Kojima KK; Matsumoto T; Fujiwara H
    Mol Cell Biol; 2005 Sep; 25(17):7675-86. PubMed ID: 16107714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Three Essential Motifs in P0 for Suppression of RNA Silencing Activity of
    Rashid MO; Zhang XY; Wang Y; Li DW; Yu JL; Han CG
    Viruses; 2019 Feb; 11(2):. PubMed ID: 30791535
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 59.