BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

400 related articles for article (PubMed ID: 29515059)

  • 1. Subchondral bone derived mesenchymal stem cells display enhanced osteo-chondrogenic differentiation, self-renewal and proliferation potentials.
    Zhang H; Li ZL; Su XZ; Ding L; Li J; Zhu H
    Exp Anim; 2018 Jul; 67(3):349-359. PubMed ID: 29515059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new source of mesenchymal stem cells for articular cartilage repair: MSCs derived from mobilized peripheral blood share similar biological characteristics in vitro and chondrogenesis in vivo as MSCs from bone marrow in a rabbit model.
    Fu WL; Zhou CY; Yu JK
    Am J Sports Med; 2014 Mar; 42(3):592-601. PubMed ID: 24327479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radial extracorporeal shockwave promotes subchondral bone stem/progenitor cell self-renewal by activating YAP/TAZ and facilitates cartilage repair in vivo.
    Zhao Z; Wang Y; Wang Q; Liang J; Hu W; Zhao S; Li P; Zhu H; Li Z
    Stem Cell Res Ther; 2021 Jan; 12(1):19. PubMed ID: 33413606
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mesenchymal stem cells derived from human induced pluripotent stem cells retain adequate osteogenicity and chondrogenicity but less adipogenicity.
    Kang R; Zhou Y; Tan S; Zhou G; Aagaard L; Xie L; Bünger C; Bolund L; Luo Y
    Stem Cell Res Ther; 2015 Aug; 6(1):144. PubMed ID: 26282538
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of in vitro chondrogenic differentiation of autologous mesenchymal stem cells on cartilage and subchondral cancellous bone repair in osteoarthritis of temporomandibular joint.
    Chen K; Man C; Zhang B; Hu J; Zhu SS
    Int J Oral Maxillofac Surg; 2013 Feb; 42(2):240-8. PubMed ID: 22763137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long bone mesenchymal stem cells (Lb-MSCs): clinically reliable cells for osteo-diseases.
    Toosi S; Naderi-Meshkin H; Kalalinia F; Pievandi MT; Hosseinkhani H; Bahrami AR; Heirani-Tabasi A; Mirahmadi M; Behravan J
    Cell Tissue Bank; 2017 Dec; 18(4):489-500. PubMed ID: 28815364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative analysis of human mesenchymal stem cells from bone marrow and adipose tissue under xeno-free conditions for cell therapy.
    Li CY; Wu XY; Tong JB; Yang XX; Zhao JL; Zheng QF; Zhao GB; Ma ZJ
    Stem Cell Res Ther; 2015 Apr; 6(1):55. PubMed ID: 25884704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Isolation and Biological Characteristics of Rabbit Bone Marrow Plug-derived Mesenchymal Stem Cells].
    Zhang H; Liao WX; Li J; Liu YL; Zhang Y; Zhu H; Li ZL
    Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2015 Apr; 23(2):500-5. PubMed ID: 25948213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radial shockwave treatment promotes human mesenchymal stem cell self-renewal and enhances cartilage healing.
    Zhang H; Li ZL; Yang F; Zhang Q; Su XZ; Li J; Zhang N; Liu CH; Mao N; Zhu H
    Stem Cell Res Ther; 2018 Mar; 9(1):54. PubMed ID: 29523197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation and prolonged expansion of oral mesenchymal stem cells under clinical-grade, GMP-compliant conditions differentially affects "stemness" properties.
    Bakopoulou A; Apatzidou D; Aggelidou E; Gousopoulou E; Leyhausen G; Volk J; Kritis A; Koidis P; Geurtsen W
    Stem Cell Res Ther; 2017 Nov; 8(1):247. PubMed ID: 29096714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Retention of the stemness of mouse adipose-derived stem cells by their expansion on human bone marrow stromal cell-derived extracellular matrix.
    Xiong Y; He J; Zhang W; Zhou G; Cao Y; Liu W
    Tissue Eng Part A; 2015 Jun; 21(11-12):1886-94. PubMed ID: 25836590
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative characteristics of mesenchymal stem cells derived from reamer-irrigator-aspirator, iliac crest bone marrow, and adipose tissue.
    Toosi S; Naderi-Meshkin H; Kalalinia F; Peivandi MT; Hossein Khani H; Bahrami AR; Heirani-Tabasi A; Mirahmadi M; Behravan J
    Cell Mol Biol (Noisy-le-grand); 2016 Aug; 62(10):68-74. PubMed ID: 27609477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased Exhaustion of the Subchondral Bone-Derived Mesenchymal Stem/ Stromal Cells in Primary Versus Dysplastic Osteoarthritis.
    Čamernik K; Mihelič A; Mihalič R; Marolt Presen D; Janež A; Trebše R; Marc J; Zupan J
    Stem Cell Rev Rep; 2020 Aug; 16(4):742-754. PubMed ID: 32200505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of molecular profiles of human mesenchymal stem cells derived from bone marrow, umbilical cord blood, placenta and adipose tissue.
    Heo JS; Choi Y; Kim HS; Kim HO
    Int J Mol Med; 2016 Jan; 37(1):115-25. PubMed ID: 26719857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RIA fractions contain mesenchymal stroma cells with high osteogenic potency.
    Kuehlfluck P; Moghaddam A; Helbig L; Child C; Wildemann B; Schmidmaier G;
    Injury; 2015 Dec; 46 Suppl 8():S23-32. PubMed ID: 26747914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation, characterization, and in vitro proliferation of canine mesenchymal stem cells derived from bone marrow, adipose tissue, muscle, and periosteum.
    Kisiel AH; McDuffee LA; Masaoud E; Bailey TR; Esparza Gonzalez BP; Nino-Fong R
    Am J Vet Res; 2012 Aug; 73(8):1305-17. PubMed ID: 22849692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of aging on the regenerative properties of bone marrow-, muscle-, and adipose-derived mesenchymal stem/stromal cells.
    Beane OS; Fonseca VC; Cooper LL; Koren G; Darling EM
    PLoS One; 2014; 9(12):e115963. PubMed ID: 25541697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differentiation of synovial CD-105(+) human mesenchymal stem cells into chondrocyte-like cells through spheroid formation.
    Arufe MC; De la Fuente A; Fuentes-Boquete I; De Toro FJ; Blanco FJ
    J Cell Biochem; 2009 Sep; 108(1):145-55. PubMed ID: 19544399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of the optimal timing for chondrogenic priming of MSCs to enhance osteogenic differentiation in vitro as a bone tissue engineering strategy.
    Freeman FE; Haugh MG; McNamara LM
    J Tissue Eng Regen Med; 2016 Apr; 10(4):E250-62. PubMed ID: 23922276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vertebral body versus iliac crest bone marrow as a source of multipotential stromal cells: Comparison of processing techniques, tri-lineage differentiation and application on a scaffold for spine fusion.
    Fragkakis EM; El-Jawhari JJ; Dunsmuir RA; Millner PA; Rao AS; Henshaw KT; Pountos I; Jones E; Giannoudis PV
    PLoS One; 2018; 13(5):e0197969. PubMed ID: 29795650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.