These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 29515383)

  • 1. Functional Dissociation of Latency-Variable, Stimulus- and Response-Locked Target P3 Sub-components in Task-Switching.
    Brydges CR; Barceló F
    Front Hum Neurosci; 2018; 12():60. PubMed ID: 29515383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An information theory account of late frontoparietal ERP positivities in cognitive control.
    Barceló F; Cooper PS
    Psychophysiology; 2018 Mar; 55(3):. PubMed ID: 28295342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast fronto-parietal cortical dynamics of conflict detection and context updating in a flanker task.
    Brydges CR; Barceló F; Nguyen AT; Fox AM
    Cogn Neurodyn; 2020 Dec; 14(6):795-814. PubMed ID: 33101532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Updating sensory versus task representations during task-switching: insights from cognitive brain potentials in humans.
    Periáñez JA; Barceló F
    Neuropsychologia; 2009 Mar; 47(4):1160-72. PubMed ID: 19350711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diversity of the P3 in the task-switching paradigm.
    Gajewski PD; Falkenstein M
    Brain Res; 2011 Sep; 1411():87-97. PubMed ID: 21803343
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural mechanisms and functional neuroanatomical networks during memory and cue-based task switching as revealed by residue iteration decomposition (RIDE) based source localization.
    Wolff N; Mückschel M; Beste C
    Brain Struct Funct; 2017 Nov; 222(8):3819-3831. PubMed ID: 28470552
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Task switching and novelty processing activate a common neural network for cognitive control.
    Barcelo F; Escera C; Corral MJ; Periáñez JA
    J Cogn Neurosci; 2006 Oct; 18(10):1734-48. PubMed ID: 17014377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Individual differences in aging and cognitive control modulate the neural indexes of context updating and maintenance during task switching.
    Adrover-Roig D; Barceló F
    Cortex; 2010 Apr; 46(4):434-50. PubMed ID: 19889406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Is P3 a strategic or a tactical component? Relationships of P3 sub-components to response times in oddball tasks with go, no-go and choice responses.
    Verleger R; Grauhan N; Śmigasiewicz K
    Neuroimage; 2016 Dec; 143():223-234. PubMed ID: 27570107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Age-related Electrophysical Correlates of Cross-modal Attention Switching.
    Huang PC; Schils LAP; Koch I; Stephan DN; Hsieh S
    J Cogn Neurosci; 2025 Jan; 37(1):43-62. PubMed ID: 39270148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Updating and validating a new framework for restoring and analyzing latency-variable ERP components from single trials with residue iteration decomposition (RIDE).
    Ouyang G; Sommer W; Zhou C
    Psychophysiology; 2015 Jun; 52(6):839-56. PubMed ID: 25630661
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Testing the stimulus-to-response bridging function of the oddball-P3 by delayed response signals and residue iteration decomposition (RIDE).
    Verleger R; Metzner MF; Ouyang G; Śmigasiewicz K; Zhou C
    Neuroimage; 2014 Oct; 100():271-80. PubMed ID: 24960419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cognitive flexibility and N2/P3 event-related brain potentials.
    Kopp B; Steinke A; Visalli A
    Sci Rep; 2020 Jun; 10(1):9859. PubMed ID: 32555267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An information theoretical approach to task-switching: evidence from cognitive brain potentials in humans.
    Barceló F; Periáñez JA; Nyhus E
    Front Hum Neurosci; 2007; 1():13. PubMed ID: 18958226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of foreknowledge and task-set shifting as mirrored in cue- and target-locked event-related potentials.
    Finke M; Escera C; Barceló F
    PLoS One; 2012; 7(11):e49486. PubMed ID: 23152912
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Training and Transfer of Cue Updating in Older Adults Is Limited: Evidence From Behavioral and Neuronal Data.
    Kray J; Ferdinand NK; Stenger K
    Front Hum Neurosci; 2020; 14():565927. PubMed ID: 33343316
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Response variations can promote the efficiency of task switching: Electrophysiological evidence.
    Zhuo B; Chen Y; Zhu M; Cao B; Li F
    Neuropsychologia; 2021 Jun; 156():107828. PubMed ID: 33727087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A toolbox for residue iteration decomposition (RIDE)--A method for the decomposition, reconstruction, and single trial analysis of event related potentials.
    Ouyang G; Sommer W; Zhou C
    J Neurosci Methods; 2015 Jul; 250():7-21. PubMed ID: 25455337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuronal firing activity in the dorsal hippocampus during the auditory discrimination oddball task in awake rats: relation to event-related potential generation.
    Shinba T
    Brain Res Cogn Brain Res; 1999 Oct; 8(3):241-50. PubMed ID: 10556602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multisubject Decomposition of Event-related Positivities in Cognitive Control: Tackling Age-related Changes in Reactive Control.
    Enriquez-Geppert S; Barceló F
    Brain Topogr; 2018 Jan; 31(1):17-34. PubMed ID: 27522402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.