These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 29515453)

  • 1. GRMDA: Graph Regression for MiRNA-Disease Association Prediction.
    Chen X; Yang JR; Guan NN; Li JQ
    Front Physiol; 2018; 9():92. PubMed ID: 29515453
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying and Exploiting Potential miRNA-Disease Associations With Neighborhood Regularized Logistic Matrix Factorization.
    He BS; Qu J; Zhao Q
    Front Genet; 2018; 9():303. PubMed ID: 30131824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MDHGI: Matrix Decomposition and Heterogeneous Graph Inference for miRNA-disease association prediction.
    Chen X; Yin J; Qu J; Huang L
    PLoS Comput Biol; 2018 Aug; 14(8):e1006418. PubMed ID: 30142158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An improved random forest-based computational model for predicting novel miRNA-disease associations.
    Yao D; Zhan X; Kwoh CK
    BMC Bioinformatics; 2019 Dec; 20(1):624. PubMed ID: 31795954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HNMDA: heterogeneous network-based miRNA-disease association prediction.
    Peng LH; Sun CN; Guan NN; Li JQ; Chen X
    Mol Genet Genomics; 2018 Aug; 293(4):983-995. PubMed ID: 29687157
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GIMDA: Graphlet interaction-based MiRNA-disease association prediction.
    Chen X; Guan NN; Li JQ; Yan GY
    J Cell Mol Med; 2018 Mar; 22(3):1548-1561. PubMed ID: 29272076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting miRNA-disease association based on inductive matrix completion.
    Chen X; Wang L; Qu J; Guan NN; Li JQ
    Bioinformatics; 2018 Dec; 34(24):4256-4265. PubMed ID: 29939227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting miRNA-Disease Association Based on Improved Graph Regression.
    Li L; Gao Z; Zheng CH; Qi R; Wang YT; Ni JC
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(6):3604-3613. PubMed ID: 34757912
    [TBL] [Abstract][Full Text] [Related]  

  • 9. HGIMDA: Heterogeneous graph inference for miRNA-disease association prediction.
    Chen X; Yan CC; Zhang X; You ZH; Huang YA; Yan GY
    Oncotarget; 2016 Oct; 7(40):65257-65269. PubMed ID: 27533456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TLHNMDA: Triple Layer Heterogeneous Network Based Inference for MiRNA-Disease Association Prediction.
    Chen X; Qu J; Yin J
    Front Genet; 2018; 9():234. PubMed ID: 30018632
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel computational model based on super-disease and miRNA for potential miRNA-disease association prediction.
    Chen X; Jiang ZC; Xie D; Huang DS; Zhao Q; Yan GY; You ZH
    Mol Biosyst; 2017 May; 13(6):1202-1212. PubMed ID: 28470244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EGBMMDA: Extreme Gradient Boosting Machine for MiRNA-Disease Association prediction.
    Chen X; Huang L; Xie D; Zhao Q
    Cell Death Dis; 2018 Jan; 9(1):3. PubMed ID: 29305594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NARRMDA: negative-aware and rating-based recommendation algorithm for miRNA-disease association prediction.
    Peng L; Chen Y; Ma N; Chen X
    Mol Biosyst; 2017 Nov; 13(12):2650-2659. PubMed ID: 29053164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Computational Study of Potential miRNA-Disease Association Inference Based on Ensemble Learning and Kernel Ridge Regression.
    Peng LH; Zhou LQ; Chen X; Piao X
    Front Bioeng Biotechnol; 2020; 8():40. PubMed ID: 32117922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SCMFMDA: Predicting microRNA-disease associations based on similarity constrained matrix factorization.
    Li L; Gao Z; Wang YT; Zhang MW; Ni JC; Zheng CH; Su Y
    PLoS Comput Biol; 2021 Jul; 17(7):e1009165. PubMed ID: 34252084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PBMDA: A novel and effective path-based computational model for miRNA-disease association prediction.
    You ZH; Huang ZA; Zhu Z; Yan GY; Li ZW; Wen Z; Chen X
    PLoS Comput Biol; 2017 Mar; 13(3):e1005455. PubMed ID: 28339468
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel Human miRNA-Disease Association Inference Based on Random Forest.
    Chen X; Wang CC; Yin J; You ZH
    Mol Ther Nucleic Acids; 2018 Dec; 13():568-579. PubMed ID: 30439645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. BHCMDA: A New Biased Heat Conduction Based Method for Potential MiRNA-Disease Association Prediction.
    Zhu X; Wang X; Zhao H; Pei T; Kuang L; Wang L
    Front Genet; 2020; 11():384. PubMed ID: 32425979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrating random walk and binary regression to identify novel miRNA-disease association.
    Niu YW; Wang GH; Yan GY; Chen X
    BMC Bioinformatics; 2019 Jan; 20(1):59. PubMed ID: 30691413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MvKFN-MDA: Multi-view Kernel Fusion Network for miRNA-disease association prediction.
    Li J; Liu T; Wang J; Li Q; Ning C; Yang Y
    Artif Intell Med; 2021 Aug; 118():102115. PubMed ID: 34412838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.