These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Potential effects of UV radiation on photosynthetic structures of the bloom-forming cyanobacterium Cylindrospermopsis raciborskii CYRF-01. Noyma NP; Silva TP; Chiarini-Garcia H; Amado AM; Roland F; Melo RC Front Microbiol; 2015; 6():1202. PubMed ID: 26579108 [TBL] [Abstract][Full Text] [Related]
3. Increased production of outer membrane vesicles by cultured freshwater bacteria in response to ultraviolet radiation. Gamalier JP; Silva TP; Zarantonello V; Dias FF; Melo RC Microbiol Res; 2017 Jan; 194():38-46. PubMed ID: 27938861 [TBL] [Abstract][Full Text] [Related]
4. Increasing Temperature Counteracts the Negative Effect of UV Radiation on Growth and Photosynthetic Efficiency of Microcystis aeruginosa and Raphidiopsis raciborskii. Noyma NP; Mesquita MCB; Roland F; Marinho MM; Huszar VLM; Lürling M Photochem Photobiol; 2021 Jul; 97(4):753-762. PubMed ID: 33394510 [TBL] [Abstract][Full Text] [Related]
5. Interspecific competition between Cylindrospermopsis raciborskii and Microcystis aeruginosa on different phosphorus substrates. Bai F; Shi J; Yang S; Yang Y; Wu Z Environ Sci Pollut Res Int; 2020 Dec; 27(34):42264-42275. PubMed ID: 32246417 [TBL] [Abstract][Full Text] [Related]
6. Intraspecific variability in response to phosphorus depleted conditions in the cyanobacteria Microcystis aeruginosa and Raphidiopsis raciborskii. Guedes IA; Pacheco ABF; Vilar MCP; Mello MM; Marinho MM; Lurling M; Azevedo SMFO Harmful Algae; 2019 Jun; 86():96-105. PubMed ID: 31358281 [TBL] [Abstract][Full Text] [Related]
7. The combined effect of clethodim (herbicide) and nitrogen variation on allelopathic interactions between Microcystis aeruginosa and Raphidiopsis raciborskii. Brêda-Alves F; de Oliveira Fernandes V; Cordeiro-Araújo MK; Chia MA Environ Sci Pollut Res Int; 2021 Mar; 28(9):11528-11539. PubMed ID: 33128150 [TBL] [Abstract][Full Text] [Related]
8. Are laboratory growth rate experiments relevant to explaining bloom-forming cyanobacteria distributions at global scale? Xiao M; Hamilton DP; O'Brien KR; Adams MP; Willis A; Burford MA Harmful Algae; 2020 Feb; 92():101732. PubMed ID: 32113600 [TBL] [Abstract][Full Text] [Related]
9. Precision early detection of invasive and toxic cyanobacteria: A case study of Raphidiopsis raciborskii. Tan F; Xiao P; Yang JR; Chen H; Jin L; Yang Y; Lin TF; Willis A; Yang J Harmful Algae; 2021 Dec; 110():102125. PubMed ID: 34887005 [TBL] [Abstract][Full Text] [Related]
10. Application of real-time PCR in the assessment of the toxic cyanobacterium Cylindrospermopsis raciborskii abundance and toxicological potential. Moreira C; Martins A; Azevedo J; Freitas M; Regueiras A; Vale M; Antunes A; Vasconcelos V Appl Microbiol Biotechnol; 2011 Oct; 92(1):189-97. PubMed ID: 21655982 [TBL] [Abstract][Full Text] [Related]
11. Does temperature favour the spread of Raphidiopsis raciborskii, an invasive bloom-forming cyanobacterium, by altering cellular trade-offs? Zheng B; He S; Zhao L; Li J; Du Y; Li Y; Shi J; Wu Z Harmful Algae; 2023 May; 124():102406. PubMed ID: 37164561 [TBL] [Abstract][Full Text] [Related]
12. Behavior of Cylindrospermopsis raciborskii during coagulation and sludge storage - higher potential risk of toxin release than Microcystis aeruginosa? Li H; Pei H; Xu H; Jin Y; Sun J J Hazard Mater; 2018 Apr; 347():307-316. PubMed ID: 29331810 [TBL] [Abstract][Full Text] [Related]
13. What drives the distribution of the bloom-forming cyanobacteria Planktothrix agardhii and Cylindrospermopsis raciborskii? Bonilla S; Aubriot L; Soares MC; González-Piana M; Fabre A; Huszar VL; Lürling M; Antoniades D; Padisák J; Kruk C FEMS Microbiol Ecol; 2012 Mar; 79(3):594-607. PubMed ID: 22092489 [TBL] [Abstract][Full Text] [Related]
14. First report of neurotoxic effect of the cyanobacterium Cylindrospermopsis raciborskii on the motility of trematode metacercariae. Lopes KC; Ferrão-Filho AS; Santos EGN; Santos CP J Helminthol; 2018 Mar; 92(2):244-249. PubMed ID: 28349851 [TBL] [Abstract][Full Text] [Related]
15. Molecular characterization of the toxic cyanobacterium Cylindrospermopsis raciborskii and design of a species-specific PCR. Wilson KM; Schembri MA; Baker PD; Saint CP Appl Environ Microbiol; 2000 Jan; 66(1):332-8. PubMed ID: 10618244 [TBL] [Abstract][Full Text] [Related]
16. Recent Advances in the Ecology of Bloom-Forming Zheng L; Liu Y; Li R; Yang Y; Jiang Y Int J Environ Res Public Health; 2023 Jan; 20(3):. PubMed ID: 36767351 [TBL] [Abstract][Full Text] [Related]
17. Differences in cyanobacterial strain responses to light and temperature reflect species plasticity. Xiao M; Willis A; Burford MA Harmful Algae; 2017 Feb; 62():84-93. PubMed ID: 28118895 [TBL] [Abstract][Full Text] [Related]
18. A comparative assessment of growth, pigment and enhanced lipid production by two toxic freshwater cyanobacteria Anabaena circinalis FSS 124 and Cylindrospermopsis raciborskii FSS 127 under various combinations of nitrogen and phosphorous inputs. Sarkar A; Rajarathinam R; Venkateshan RB Environ Sci Pollut Res Int; 2021 Apr; 28(13):15923-15933. PubMed ID: 33247403 [TBL] [Abstract][Full Text] [Related]