BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 29515599)

  • 1. Analysis of Yellow Striped Mutants of
    Chan-Rodriguez D; Walker EL
    Front Plant Sci; 2018; 9():157. PubMed ID: 29515599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterizing the crucial components of iron homeostasis in the maize mutants ys1 and ys3.
    Nozoye T; Nakanishi H; Nishizawa NK
    PLoS One; 2013; 8(5):e62567. PubMed ID: 23667491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptomic analyses of maize ys1 and ys3 mutants reveal maize iron homeostasis.
    Nozoye T; Nakanishi H; Nishizawa NK
    Genom Data; 2015 Sep; 5():97-9. PubMed ID: 26484234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maize yellow stripe1 encodes a membrane protein directly involved in Fe(III) uptake.
    Curie C; Panaviene Z; Loulergue C; Dellaporta SL; Briat JF; Walker EL
    Nature; 2001 Jan; 409(6818):346-9. PubMed ID: 11201743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Yellow stripe1. Expanded roles for the maize iron-phytosiderophore transporter.
    Roberts LA; Pierson AJ; Panaviene Z; Walker EL
    Plant Physiol; 2004 May; 135(1):112-20. PubMed ID: 15107503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iron Inefficiency in Maize Mutant ys1 (Zea mays L. cv Yellow-Stripe) Is Caused by a Defect in Uptake of Iron Phytosiderophores.
    Von Wiren N; Mori S; Marschner H; Romheld V
    Plant Physiol; 1994 Sep; 106(1):71-77. PubMed ID: 12232304
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brachypodium distachyon as a new model system for understanding iron homeostasis in grasses: phylogenetic and expression analysis of Yellow Stripe-Like (YSL) transporters.
    Yordem BK; Conte SS; Ma JF; Yokosho K; Vasques KA; Gopalsamy SN; Walker EL
    Ann Bot; 2011 Oct; 108(5):821-33. PubMed ID: 21831857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular evidence for phytosiderophore-induced improvement of iron nutrition of peanut intercropped with maize in calcareous soil.
    Xiong H; Kakei Y; Kobayashi T; Guo X; Nakazono M; Takahashi H; Nakanishi H; Shen H; Zhang F; Nishizawa NK; Zuo Y
    Plant Cell Environ; 2013 Oct; 36(10):1888-902. PubMed ID: 23496756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptional and physiological analyses of Fe deficiency response in maize reveal the presence of Strategy I components and Fe/P interactions.
    Zanin L; Venuti S; Zamboni A; Varanini Z; Tomasi N; Pinton R
    BMC Genomics; 2017 Feb; 18(1):154. PubMed ID: 28193158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for a specific uptake system for iron phytosiderophores in roots of grasses.
    Römheld V; Marschner H
    Plant Physiol; 1986 Jan; 80(1):175-80. PubMed ID: 16664577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uptake mechanism of iron-phytosiderophore from the soil based on the structure of yellow stripe transporter.
    Yamagata A; Murata Y; Namba K; Terada T; Fukai S; Shirouzu M
    Nat Commun; 2022 Nov; 13(1):7180. PubMed ID: 36424382
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of AhFRO1, an Fe(III)-chelate reductase of peanut, during iron deficiency stress and intercropping with maize.
    Ding H; Duan L; Wu H; Yang R; Ling H; Li WX; Zhang F
    Physiol Plant; 2009 Jul; 136(3):274-83. PubMed ID: 19453500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Roots of Iron-Efficient Maize also Absorb Phytosiderophore-Chelated Zinc.
    Von Wiren N; Marschner H; Romheld V
    Plant Physiol; 1996 Aug; 111(4):1119-1125. PubMed ID: 12226351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporters.
    Curie C; Cassin G; Couch D; Divol F; Higuchi K; Le Jean M; Misson J; Schikora A; Czernic P; Mari S
    Ann Bot; 2009 Jan; 103(1):1-11. PubMed ID: 18977764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mapping of the Quantitative Trait Loci and Candidate Genes Associated With Iron Efficiency in Maize.
    Xu J; Qin X; Zhu H; Chen F; Fu X; Yu F
    Front Plant Sci; 2022; 13():855572. PubMed ID: 35528939
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mediation of Zinc and Iron Accumulation in Maize by ZmIRT2, a Novel Iron-Regulated Transporter.
    Li S; Song Z; Liu X; Zhou X; Yang W; Chen J; Chen R
    Plant Cell Physiol; 2022 Apr; 63(4):521-534. PubMed ID: 35137187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutations in Arabidopsis yellow stripe-like1 and yellow stripe-like3 reveal their roles in metal ion homeostasis and loading of metal ions in seeds.
    Waters BM; Chu HH; Didonato RJ; Roberts LA; Eisley RB; Lahner B; Salt DE; Walker EL
    Plant Physiol; 2006 Aug; 141(4):1446-58. PubMed ID: 16815956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arabidopsis Yellow Stripe-Like2 (YSL2): a metal-regulated gene encoding a plasma membrane transporter of nicotianamine-metal complexes.
    DiDonato RJ; Roberts LA; Sanderson T; Eisley RB; Walker EL
    Plant J; 2004 Aug; 39(3):403-14. PubMed ID: 15255869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ZmYS1 functions as a proton-coupled symporter for phytosiderophore- and nicotianamine-chelated metals.
    Schaaf G; Ludewig U; Erenoglu BE; Mori S; Kitahara T; von Wirén N
    J Biol Chem; 2004 Mar; 279(10):9091-6. PubMed ID: 14699112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Further characterization of ferric-phytosiderophore transporters ZmYS1 and HvYS1 in maize and barley.
    Ueno D; Yamaji N; Ma JF
    J Exp Bot; 2009; 60(12):3513-20. PubMed ID: 19549626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.