BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 29515599)

  • 21. Further characterization of ferric-phytosiderophore transporters ZmYS1 and HvYS1 in maize and barley.
    Ueno D; Yamaji N; Ma JF
    J Exp Bot; 2009; 60(12):3513-20. PubMed ID: 19549626
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The plasma membrane proteome of maize roots grown under low and high iron conditions.
    Hopff D; Wienkoop S; Lüthje S
    J Proteomics; 2013 Oct; 91():605-18. PubMed ID: 23353019
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The iron-chelate transporter OsYSL9 plays a role in iron distribution in developing rice grains.
    Senoura T; Sakashita E; Kobayashi T; Takahashi M; Aung MS; Masuda H; Nakanishi H; Nishizawa NK
    Plant Mol Biol; 2017 Nov; 95(4-5):375-387. PubMed ID: 28871478
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genome-Wide Association Analysis Reveals the Genetic Basis of Iron-Deficiency Stress Tolerance in Maize.
    Xu J; Xu W; Chen X; Zhu H; Fu X; Yu F
    Front Plant Sci; 2022; 13():878809. PubMed ID: 35720580
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Carbon monoxide improves adaptation of Arabidopsis to iron deficiency.
    Kong WW; Zhang LP; Guo K; Liu ZP; Yang ZM
    Plant Biotechnol J; 2010 Jan; 8(1):88-99. PubMed ID: 20055961
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of nitrogen on root release of phytosiderophores and root uptake of Fe(III)-phytosiderophore in Fe-deficient wheat plants.
    Aciksoz SB; Ozturk L; Gokmen OO; Römheld V; Cakmak I
    Physiol Plant; 2011 Jul; 142(3):287-96. PubMed ID: 21338370
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Disruption of OsYSL15 leads to iron inefficiency in rice plants.
    Lee S; Chiecko JC; Kim SA; Walker EL; Lee Y; Guerinot ML; An G
    Plant Physiol; 2009 Jun; 150(2):786-800. PubMed ID: 19376836
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metabolic Interactions between
    Boiteau RM; Markillie LM; Hoyt DW; Hu D; Chu RK; Mitchell HD; Pasa-Tolic L; Jansson JK; Jansson C
    mSystems; 2021 Jan; 6(1):. PubMed ID: 33402348
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improving Zinc and Iron Accumulation in Maize Grains Using the Zinc and Iron Transporter ZmZIP5.
    Li S; Liu X; Zhou X; Li Y; Yang W; Chen R
    Plant Cell Physiol; 2019 Sep; 60(9):2077-2085. PubMed ID: 31165152
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantitative trait loci and candidate genes for iron and zinc bio-fortification in genetically diverse germplasm of maize (
    Basnet B; Khanal S
    Heliyon; 2022 Dec; 8(12):e12593. PubMed ID: 36619433
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A putative function for the arabidopsis Fe-Phytosiderophore transporter homolog AtYSL2 in Fe and Zn homeostasis.
    Schaaf G; Schikora A; Häberle J; Vert G; Ludewig U; Briat JF; Curie C; von Wirén N
    Plant Cell Physiol; 2005 May; 46(5):762-74. PubMed ID: 15753101
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Local and systemic signaling of iron status and its interactions with homeostasis of other essential elements.
    Gayomba SR; Zhai Z; Jung HI; Vatamaniuk OK
    Front Plant Sci; 2015; 6():716. PubMed ID: 26442030
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The road to micronutrient biofortification of rice: progress and prospects.
    Bashir K; Takahashi R; Nakanishi H; Nishizawa NK
    Front Plant Sci; 2013; 4():15. PubMed ID: 23404425
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of the Nonpathogenic Strain
    Núñez-Cano J; Romera FJ; Prieto P; García MJ; Sevillano-Caño J; Agustí-Brisach C; Pérez-Vicente R; Ramos J; Lucena C
    Plants (Basel); 2023 Aug; 12(17):. PubMed ID: 37687390
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Arbuscular mycorrhizal symbiosis alters the expression patterns of three key iron homeostasis genes, ZmNAS1, ZmNAS3, and ZmYS1, in S deprived maize plants.
    Chorianopoulou SN; Saridis YI; Dimou M; Katinakis P; Bouranis DL
    Front Plant Sci; 2015; 6():257. PubMed ID: 25941530
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nitric oxide improves internal iron availability in plants.
    Graziano M; Beligni MV; Lamattina L
    Plant Physiol; 2002 Dec; 130(4):1852-9. PubMed ID: 12481068
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Iron Retention in Root Hemicelluloses Causes Genotypic Variability in the Tolerance to Iron Deficiency-Induced Chlorosis in Maize.
    Shi R; Melzer M; Zheng S; Benke A; Stich B; von Wirén N
    Front Plant Sci; 2018; 9():557. PubMed ID: 29755495
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phytosiderophore pathway response in barley exposed to iron, zinc or copper starvation.
    Aleksza D; Spiridon A; Tarkka M; Hauser MT; Hann S; Causon T; Kratena N; Stanetty C; George TS; Russell J; Oburger E
    Plant Sci; 2024 Feb; 339():111919. PubMed ID: 37992897
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Shoot iron status and auxin are involved in iron deficiency-induced phytosiderophores release in wheat.
    Garnica M; Bacaicoa E; Mora V; San Francisco S; Baigorri R; Zamarreño AM; Garcia-Mina JM
    BMC Plant Biol; 2018 Jun; 18(1):105. PubMed ID: 29866051
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Novel rice iron biofortification approaches using expression of ZmYS1 and OsTOM1 controlled by tissue-specific promoters.
    Kawakami Y; Gruissem W; Bhullar NK
    J Exp Bot; 2022 Sep; 73(16):5440-5459. PubMed ID: 35648686
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.