These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 29515675)

  • 1. Hydrogen-Borrowing Alcohol Bioamination with Coimmobilized Dehydrogenases.
    Böhmer W; Knaus T; Mutti FG
    ChemCatChem; 2018 Feb; 10(4):731-735. PubMed ID: 29515675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient synthesis of enantiopure amines from alcohols using resting
    Houwman JA; Knaus T; Costa M; Mutti FG
    Green Chem; 2019 Jul; 21(14):3846-3857. PubMed ID: 33628111
    [No Abstract]   [Full Text] [Related]  

  • 3. Generation of Oxidoreductases with Dual Alcohol Dehydrogenase and Amine Dehydrogenase Activity.
    Tseliou V; Schilder D; Masman MF; Knaus T; Mutti FG
    Chemistry; 2021 Feb; 27(10):3315-3325. PubMed ID: 33073866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conversion of alcohols to enantiopure amines through dual-enzyme hydrogen-borrowing cascades.
    Mutti FG; Knaus T; Scrutton NS; Breuer M; Turner NJ
    Science; 2015 Sep; 349(6255):1525-9. PubMed ID: 26404833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing cofactor recycling in the bioconversion of racemic alcohols to chiral amines with alcohol dehydrogenase and amine dehydrogenase by coupling cells and cell-free system.
    Liu J; Li Z
    Biotechnol Bioeng; 2019 Mar; 116(3):536-542. PubMed ID: 30536736
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct Alkylation of Amines with Primary and Secondary Alcohols through Biocatalytic Hydrogen Borrowing.
    Montgomery SL; Mangas-Sanchez J; Thompson MP; Aleku GA; Dominguez B; Turner NJ
    Angew Chem Int Ed Engl; 2017 Aug; 56(35):10491-10494. PubMed ID: 28671344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amine dehydrogenases: efficient biocatalysts for the reductive amination of carbonyl compounds.
    Knaus T; Böhmer W; Mutti FG
    Green Chem; 2017 Jan; 19(2):453-463. PubMed ID: 28663713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of L-alanine for redox self-sufficient amination of alcohols.
    Klatte S; Wendisch VF
    Microb Cell Fact; 2015 Jan; 14():9. PubMed ID: 25612558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biosynthesis of Chiral Amino Alcohols via an Engineered Amine Dehydrogenase in
    Tong F; Qin Z; Wang H; Jiang Y; Li J; Ming H; Qu G; Xiao Y; Sun Z
    Front Bioeng Biotechnol; 2021; 9():778584. PubMed ID: 35071200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redox self-sufficient whole cell biotransformation for amination of alcohols.
    Klatte S; Wendisch VF
    Bioorg Med Chem; 2014 Oct; 22(20):5578-85. PubMed ID: 24894767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Artificial multi-enzyme networks for the asymmetric amination of sec-alcohols.
    Tauber K; Fuchs M; Sattler JH; Pitzer J; Pressnitz D; Koszelewski D; Faber K; Pfeffer J; Haas T; Kroutil W
    Chemistry; 2013 Mar; 19(12):4030-5. PubMed ID: 23341101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biocatalytic hydrogen-transfer to access enantiomerically pure proxyphylline, xanthinol, and diprophylline.
    Borowiecki P; Rudzka A; Reiter T; Kroutil W
    Bioorg Chem; 2022 Oct; 127():105967. PubMed ID: 35777234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of amine dehydrogenases with increased catalytic performance and substrate scope from ε-deaminating L-Lysine dehydrogenase.
    Tseliou V; Knaus T; Masman MF; Corrado ML; Mutti FG
    Nat Commun; 2019 Aug; 10(1):3717. PubMed ID: 31420547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High Regio- and Stereoselective Multi-enzymatic Synthesis of All Phenylpropanolamine Stereoisomers from β-Methylstyrene.
    Corrado ML; Knaus T; Mutti FG
    Chembiochem; 2021 Jul; 22(13):2345-2350. PubMed ID: 33880862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct Asymmetric Reductive Amination of Alkyl (Hetero)Aryl Ketones by an Engineered Amine Dehydrogenase.
    Kong W; Liu Y; Huang C; Zhou L; Gao J; Turner NJ; Jiang Y
    Angew Chem Int Ed Engl; 2022 May; 61(21):e202202264. PubMed ID: 35285128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous Flow Biocatalytic Reductive Amination by Co-Entrapping Dehydrogenases with Agarose Gel in a 3D-Printed Mould Reactor.
    Croci F; Vilím J; Adamopoulou T; Tseliou V; Schoenmakers PJ; Knaus T; Mutti FG
    Chembiochem; 2022 Nov; 23(22):e202200549. PubMed ID: 36173971
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stereo-Divergent Enzyme Cascades to Convert Racemic 4-Phenyl-2-Butanol into either (S)- or (R)-Corresponding Chiral Amine.
    Romero-Fernandez M; Paradisi F
    Chembiochem; 2022 Apr; 23(8):e202200108. PubMed ID: 35189014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PQQ-dependent Dehydrogenase Enables One-pot Bi-enzymatic Enantio-convergent Biocatalytic Amination of Racemic
    Gandomkar S; Rocha R; Sorgenfrei FA; Montero LM; Fuchs M; Kroutil W
    ChemCatChem; 2021 Mar; 13(5):1290-1293. PubMed ID: 33777250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Asymmetric Biocatalytic Amination of Ketones at the Expense of NH3 and Molecular Hydrogen.
    Holzer AK; Hiebler K; Mutti FG; Simon RC; Lauterbach L; Lenz O; Kroutil W
    Org Lett; 2015 May; 17(10):2431-3. PubMed ID: 25946312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioamination of alkane with ammonium by an artificially designed multienzyme cascade.
    Yu HL; Li T; Chen FF; Luo XJ; Li A; Yang C; Zheng GW; Xu JH
    Metab Eng; 2018 May; 47():184-189. PubMed ID: 29477859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.