These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 29515843)

  • 21. A continuous optimization approach for inferring parameters in mathematical models of regulatory networks.
    Deng Z; Tian T
    BMC Bioinformatics; 2014 Jul; 15(1):256. PubMed ID: 25070047
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inference of nonlinear gene regulatory networks through optimized ensemble of support vector regression and dynamic Bayesian networks.
    Akutekwe A; Seker H
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():8177-80. PubMed ID: 26738192
    [TBL] [Abstract][Full Text] [Related]  

  • 23. GREMA: modelling of emulated gene regulatory networks with confidence levels based on evolutionary intelligence to cope with the underdetermined problem.
    Tsai MJ; Wang JR; Ho SJ; Shu LS; Huang WL; Ho SY
    Bioinformatics; 2020 Jun; 36(12):3833-3840. PubMed ID: 32399550
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An efficient data assimilation schema for restoration and extension of gene regulatory networks using time-course observation data.
    Hasegawa T; Mori T; Yamaguchi R; Imoto S; Miyano S; Akutsu T
    J Comput Biol; 2014 Nov; 21(11):785-98. PubMed ID: 25244077
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Estimating sparse gene regulatory networks using a bayesian linear regression.
    Sarder P; Schierding W; Cobb JP; Nehorai A
    IEEE Trans Nanobioscience; 2010 Jun; 9(2):121-31. PubMed ID: 20650703
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Employing decomposable partially observable Markov decision processes to control gene regulatory networks.
    Erdogdu U; Polat F; Alhajj R
    Artif Intell Med; 2017 Nov; 83():14-34. PubMed ID: 28733120
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inference of gene regulatory networks based on nonlinear ordinary differential equations.
    Ma B; Fang M; Jiao X
    Bioinformatics; 2020 Dec; 36(19):4885-4893. PubMed ID: 31950997
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Periodic synchronization of isolated network elements facilitates simulating and inferring gene regulatory networks including stochastic molecular kinetics.
    Hettich J; Gebhardt JCM
    BMC Bioinformatics; 2022 Jan; 23(1):13. PubMed ID: 34986805
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inferring Drosophila gap gene regulatory network: a parameter sensitivity and perturbation analysis.
    Fomekong-Nanfack Y; Postma M; Kaandorp JA
    BMC Syst Biol; 2009 Sep; 3():94. PubMed ID: 19769791
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantitative dynamic modelling of the gene regulatory network controlling adipogenesis.
    Wang Y; Li R; Ji C; Shi S; Cheng Y; Sun H; Li Y
    PLoS One; 2014; 9(10):e110563. PubMed ID: 25333650
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Extraction of elementary rate constants from global network analysis of E. coli central metabolism.
    Zhao J; Ridgway D; Broderick G; Kovalenko A; Ellison M
    BMC Syst Biol; 2008 May; 2():41. PubMed ID: 18462493
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inference of Vohradský's models of genetic networks by solving two-dimensional function optimization problems.
    Kimura S; Sato M; Okada-Hatakeyama M
    PLoS One; 2013; 8(12):e83308. PubMed ID: 24386175
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Finding acceptable parameter regions of stochastic Hill functions for multisite phosphorylation mechanism.
    Chen M; Ahmadian M; Watson LT; Cao Y
    J Chem Phys; 2020 Mar; 152(12):124108. PubMed ID: 32241152
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bayesian differential analysis of gene regulatory networks exploiting genetic perturbations.
    Li Y; Liu D; Li T; Zhu Y
    BMC Bioinformatics; 2020 Jan; 21(1):12. PubMed ID: 31918656
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stochastic modeling and numerical simulation of gene regulatory networks with protein bursting.
    Pájaro M; Alonso AA; Otero-Muras I; Vázquez C
    J Theor Biol; 2017 May; 421():51-70. PubMed ID: 28341132
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genomic data assimilation using a higher moment filtering technique for restoration of gene regulatory networks.
    Hasegawa T; Mori T; Yamaguchi R; Shimamura T; Miyano S; Imoto S; Akutsu T
    BMC Syst Biol; 2015 Mar; 9():14. PubMed ID: 25890175
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Kalman-filter based approach to identification of time-varying gene regulatory networks.
    Xiong J; Zhou T
    PLoS One; 2013; 8(10):e74571. PubMed ID: 24116005
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inference of gene regulatory networks from time series by Tsallis entropy.
    Lopes FM; de Oliveira EA; Cesar RM
    BMC Syst Biol; 2011 May; 5():61. PubMed ID: 21545720
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Study of Algorithms Reconstructing Gene Regulatory Network with Resampling and Conditional Mutual Information].
    Liu F
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2016 Oct; 33(5):985-90. PubMed ID: 29714955
    [TBL] [Abstract][Full Text] [Related]  

  • 40. TRaCE+: Ensemble inference of gene regulatory networks from transcriptional expression profiles of gene knock-out experiments.
    Ud-Dean SM; Heise S; Klamt S; Gunawan R
    BMC Bioinformatics; 2016 Jun; 17():252. PubMed ID: 27342648
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.