These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 29515858)

  • 21. Aposematic coloration from Mid-Cretaceous Kachin amber.
    Xu C; Luo C; Jarzembowski EA; Fang Y; Wang B
    Philos Trans R Soc Lond B Biol Sci; 2022 Mar; 377(1847):20210039. PubMed ID: 35124999
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Geographic mosaic of selection by avian predators on hindwing warning colour in a polymorphic aposematic moth.
    Rönkä K; Valkonen JK; Nokelainen O; Rojas B; Gordon S; Burdfield-Steel E; Mappes J
    Ecol Lett; 2020 Nov; 23(11):1654-1663. PubMed ID: 32881319
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The population ecology of the Cinnabar Moth, Tyria jacobaeae L. (Lepidoptera, Arctiidae).
    Dempster JP
    Oecologia; 1971 Mar; 7(1):26-67. PubMed ID: 28311559
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effects of predator learning, forgetting, and recognition errors on the evolution of warning coloration.
    Servedio MR
    Evolution; 2000 Jun; 54(3):751-63. PubMed ID: 10937250
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Warning coloration can be disruptive: aposematic marginal wing patterning in the wood tiger moth.
    Honma A; Mappes J; Valkonen JK
    Ecol Evol; 2015 Nov; 5(21):4863-74. PubMed ID: 26640666
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Linking the evolution and form of warning coloration in nature.
    Stevens M; Ruxton GD
    Proc Biol Sci; 2012 Feb; 279(1728):417-26. PubMed ID: 22113031
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Warning displays in spiny animals: one (more) evolutionary route to aposematism.
    Speed MP; Ruxton GD
    Evolution; 2005 Dec; 59(12):2499-508. PubMed ID: 16526498
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Avian predators attack aposematic prey more forcefully when they are part of an aggregation.
    Skelhorn J; Ruxton GD
    Biol Lett; 2006 Dec; 2(4):488-90. PubMed ID: 17148269
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The evolution of conspicuousness in frogs: When to signal toxicity?
    Roberts SM; Stuart-Fox D; Medina I
    J Evol Biol; 2022 Nov; 35(11):1455-1464. PubMed ID: 36129907
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Conspicuous coloration of toxin-resistant predators implicates additional trophic interactions in a predator-prey arms race.
    Hague MTJ; Miller LE; Stokes AN; Feldman CR; Brodie ED; Brodie ED
    Mol Ecol; 2023 Aug; 32(16):4482-4496. PubMed ID: 36336815
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Conspicuous stripes on prey capture attention and reduce attacks by foraging jumping spiders.
    Gawel L; Powell EC; Brock M; Taylor LA
    R Soc Open Sci; 2023 Nov; 10(11):230907. PubMed ID: 38026030
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evolutionary transitions from camouflage to aposematism: Hidden signals play a pivotal role.
    Loeffler-Henry K; Kang C; Sherratt TN
    Science; 2023 Mar; 379(6637):1136-1140. PubMed ID: 36927015
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Macroevolution of protective coloration across caterpillars reflects relationships with host plants.
    Robinson ML; Weber MG; Freedman MG; Jordan E; Ashlock SR; Yonenaga J; Strauss SY
    Proc Biol Sci; 2023 Jan; 290(1991):20222293. PubMed ID: 36651051
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cryptic differences in colour among Müllerian mimics: how can the visual capacities of predators and prey shape the evolution of wing colours?
    Llaurens V; Joron M; Théry M
    J Evol Biol; 2014 Mar; 27(3):531-40. PubMed ID: 24444083
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Strong antiapostatic selection against novel rare aposematic prey.
    Lindström L; Alatalo RV; Lyytinen A; Mappes J
    Proc Natl Acad Sci U S A; 2001 Jul; 98(16):9181-4. PubMed ID: 11459937
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Automimicry destabilizes aposematism: predator sample-and-reject behaviour may provide a solution.
    Gamberale-Stille G; Guilford T
    Proc Biol Sci; 2004 Dec; 271(1557):2621-5. PubMed ID: 15615689
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multiple, recurring origins of aposematism and diet specialization in poison frogs.
    Santos JC; Coloma LA; Cannatella DC
    Proc Natl Acad Sci U S A; 2003 Oct; 100(22):12792-7. PubMed ID: 14555763
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Increasingly cautious sampling, not the black colouration of unpalatable prey, is used by fish in avoidance learning.
    Kaczmarski M; Kaczmarek JM; Kowalski K; Borowski K; Kęsy J; Kloskowski J
    Anim Cogn; 2023 Sep; 26(5):1705-1711. PubMed ID: 37505424
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Predator mixes and the conspicuousness of aposematic signals.
    Endler JA; Mappes J
    Am Nat; 2004 Apr; 163(4):532-47. PubMed ID: 15122501
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Perspective: the evolution of warning coloration is not paradoxical.
    Marples NM; Kelly DJ; Thomas RJ
    Evolution; 2005 May; 59(5):933-40. PubMed ID: 16136793
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.