These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 29515862)

  • 41. Research on Six-Axis Sensor-Based Step-Counting Algorithm for Grazing Sheep.
    Jiang C; Qi J; Hu T; Wang X; Bai T; Guo L; Yan R
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447681
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The effectiveness of simple heuristic features in sensor orientation and placement problems in human activity recognition using a single smartphone accelerometer.
    Barua A; Jiang X; Fuller D
    Biomed Eng Online; 2024 Feb; 23(1):21. PubMed ID: 38368358
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Evaluating Behavior Recognition Pipeline of Laying Hens Using Wearable Inertial Sensors.
    Fujinami K; Takuno R; Sato I; Shimmura T
    Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299804
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A comparison of activity classification in younger and older cohorts using a smartphone.
    Del Rosario MB; Wang K; Wang J; Liu Y; Brodie M; Delbaere K; Lovell NH; Lord SR; Redmond SJ
    Physiol Meas; 2014 Nov; 35(11):2269-86. PubMed ID: 25340659
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The new design of cows' behavior classifier based on acceleration data and proposed feature set.
    Phi Khanh PC; Tran DT; Duong VT; Thinh NH; Tran DN
    Math Biosci Eng; 2020 Mar; 17(4):2760-2780. PubMed ID: 32987494
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Classification of standing and sitting phases based on in-socket piezoelectric sensors in a transfemoral amputee.
    Yahya T; Hamzaid NA; Ali S; Jasni F; Shasmin HN
    Biomed Tech (Berl); 2020 Oct; 65(5):567-576. PubMed ID: 32459189
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Enhanced Classification of Dog Activities with Quaternion-Based Fusion Approach on High-Dimensional Raw Data from Wearable Sensors.
    Muminov A; Mukhiddinov M; Cho J
    Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502172
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Activity classification using the GENEA: optimum sampling frequency and number of axes.
    Zhang S; Murray P; Zillmer R; Eston RG; Catt M; Rowlands AV
    Med Sci Sports Exerc; 2012 Nov; 44(11):2228-34. PubMed ID: 22617400
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Classifying running speed conditions using a single wearable sensor: Optimal segmentation and feature extraction methods.
    Benson LC; Clermont CA; Osis ST; Kobsar D; Ferber R
    J Biomech; 2018 Apr; 71():94-99. PubMed ID: 29454542
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Measuring dairy cow welfare with real-time sensor-based data and farm records: a concept study.
    Stygar AH; Frondelius L; Berteselli GV; Gómez Y; Canali E; Niemi JK; Llonch P; Pastell M
    Animal; 2023 Dec; 17(12):101023. PubMed ID: 37981450
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Evaluation of accelerometer based multi-sensor versus single-sensor activity recognition systems.
    Gao L; Bourke AK; Nelson J
    Med Eng Phys; 2014 Jun; 36(6):779-85. PubMed ID: 24636448
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Machine learning based canine posture estimation using inertial data.
    Marcato M; Tedesco S; O'Mahony C; O'Flynn B; Galvin P
    PLoS One; 2023; 18(6):e0286311. PubMed ID: 37342986
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A novel smartphone-based activity recognition modeling method for tracked equipment in forest operations.
    Becker RM; Keefe RF
    PLoS One; 2022; 17(4):e0266568. PubMed ID: 35385537
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Rumination Detection in Sheep: A Systematic Review of Sensor-Based Approaches.
    Schneidewind SJ; Al Merestani MR; Schmidt S; Schmidt T; Thöne-Reineke C; Wiegard M
    Animals (Basel); 2023 Dec; 13(24):. PubMed ID: 38136794
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Activities of daily living with motion: A dataset with accelerometer, magnetometer and gyroscope data from mobile devices.
    Pires IM; Garcia NM; Zdravevski E; Lameski P
    Data Brief; 2020 Dec; 33():106628. PubMed ID: 33344738
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Uncovering Patterns in Dairy Cow Behaviour: A Deep Learning Approach with Tri-Axial Accelerometer Data.
    Balasso P; Taccioli C; Serva L; Magrin L; Andrighetto I; Marchesini G
    Animals (Basel); 2023 Jun; 13(11):. PubMed ID: 37889789
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A Machine Learning Approach for Walking Classification in Elderly People with Gait Disorders.
    Peimankar A; Winther TS; Ebrahimi A; Wiil UK
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679471
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Animal Welfare Implications of Digital Tools for Monitoring and Management of Cattle and Sheep on Pasture.
    Herlin A; Brunberg E; Hultgren J; Högberg N; Rydberg A; Skarin A
    Animals (Basel); 2021 Mar; 11(3):. PubMed ID: 33804235
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Improving the Event-Based Classification Accuracy in Pit-Drilling Operations: An Application by Neural Networks and Median Filtering of the Acceleration Input Signal Data.
    Castro Pérez SN; Borz SA
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577496
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Feature selection for elderly faller classification based on wearable sensors.
    Howcroft J; Kofman J; Lemaire ED
    J Neuroeng Rehabil; 2017 May; 14(1):47. PubMed ID: 28558724
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.