These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 29515895)

  • 1. A biomolecular proportional integral controller based on feedback regulations of protein level and activity.
    Mairet F
    R Soc Open Sci; 2018 Feb; 5(2):171966. PubMed ID: 29515895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A universal biomolecular integral feedback controller for robust perfect adaptation.
    Aoki SK; Lillacci G; Gupta A; Baumschlager A; Schweingruber D; Khammash M
    Nature; 2019 Jun; 570(7762):533-537. PubMed ID: 31217585
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membrane sequestration of the signal transduction protein GlnK by the ammonium transporter AmtB.
    Coutts G; Thomas G; Blakey D; Merrick M
    EMBO J; 2002 Feb; 21(4):536-45. PubMed ID: 11847102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A genetic mammalian proportional-integral feedback control circuit for robust and precise gene regulation.
    Frei T; Chang CH; Filo M; Arampatzis A; Khammash M
    Proc Natl Acad Sci U S A; 2022 Jun; 119(24):e2122132119. PubMed ID: 35687671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Guidelines for designing the antithetic feedback motif.
    Baetica AA; Leong YP; Murray RM
    Phys Biol; 2020 Aug; 17(5):055002. PubMed ID: 32217822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibitory complex of the transmembrane ammonia channel, AmtB, and the cytosolic regulatory protein, GlnK, at 1.96 A.
    Gruswitz F; O'Connell J; Stroud RM
    Proc Natl Acad Sci U S A; 2007 Jan; 104(1):42-7. PubMed ID: 17190799
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of GlnK activity: modification, membrane sequestration and proteolysis as regulatory principles in the network of nitrogen control in Corynebacterium glutamicum.
    Strösser J; Lüdke A; Schaffer S; Krämer R; Burkovski A
    Mol Microbiol; 2004 Oct; 54(1):132-47. PubMed ID: 15458411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterisation of the glnK-amtB operon and the involvement of AmtB in methylammonium uptake in Azorhizobium caulinodans.
    Michel-Reydellet N; Desnoues N; de Zamaroczy M; Elmerich C; Kaminski PA
    Mol Gen Genet; 1998 Jun; 258(6):671-7. PubMed ID: 9671036
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of the GlnK signal transduction protein in the regulation of nitrogen assimilation in Escherichia coli.
    Atkinson MR; Ninfa AJ
    Mol Microbiol; 1998 Jul; 29(2):431-47. PubMed ID: 9720863
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antithetic Integral Feedback Ensures Robust Perfect Adaptation in Noisy Biomolecular Networks.
    Briat C; Gupta A; Khammash M
    Cell Syst; 2016 Jan; 2(1):15-26. PubMed ID: 27136686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biologically inspired design of feedback control systems implemented using DNA strand displacement reactions.
    Foo M; Sawlekar R; Kulkarni VV; Bates DG
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1455-1458. PubMed ID: 28268600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of the protein environment in the hydrophilic pore of the ammonia transporter protein AmtB upon GlnK protein binding.
    Ishikita H
    FEBS Lett; 2007 Sep; 581(22):4293-7. PubMed ID: 17707821
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of nitrogen fixation in the phototrophic purple bacterium Rhodobacter capsulatus.
    Masepohl B; Drepper T; Paschen A; Gross S; Pawlowski A; Raabe K; Riedel KU; Klipp W
    J Mol Microbiol Biotechnol; 2002 May; 4(3):243-8. PubMed ID: 11931554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complex formation between AmtB and GlnK: an ancestral role in prokaryotic nitrogen control.
    Javelle A; Merrick M
    Biochem Soc Trans; 2005 Feb; 33(Pt 1):170-2. PubMed ID: 15667297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The control of the controller: molecular mechanisms for robust perfect adaptation and temperature compensation.
    Ni XY; Drengstig T; Ruoff P
    Biophys J; 2009 Sep; 97(5):1244-53. PubMed ID: 19720012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Digitally controlled analog proportional-integral-derivative (PID) controller for high-speed scanning probe microscopy.
    Dukic M; Todorov V; Andany S; Nievergelt AP; Yang C; Hosseini N; Fantner GE
    Rev Sci Instrum; 2017 Dec; 88(12):123712. PubMed ID: 29289234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolutionary optimization of sliding mode controller for level control system.
    Laware AR; Talange DB; Bandal VS
    ISA Trans; 2018 Dec; 83():199-213. PubMed ID: 30144980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An intelligent control scheme for precise tip-motion control in atomic force microscopy.
    Wang Y; Hu X; Xu L
    Scanning; 2016; 38(2):93-9. PubMed ID: 26183109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fractional order automatic tuning of PI
    Trivedi R; Padhy PK
    ISA Trans; 2020 Apr; 99():351-360. PubMed ID: 31561873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transient response characteristics in a biomolecular integral controller.
    Sen S
    IET Syst Biol; 2016 Apr; 10(2):57-63. PubMed ID: 26997660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.