BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 29515993)

  • 1.
    Yang H; Sun L; Li W; Liu G; Tang Y
    Front Chem; 2018; 6():30. PubMed ID: 29515993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using Machine Learning Methods and Structural Alerts for Prediction of Mitochondrial Toxicity.
    Hemmerich J; Troger F; Füzi B; F Ecker G
    Mol Inform; 2020 May; 39(5):e2000005. PubMed ID: 32108997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational Approaches to Identify Structural Alerts and Their Applications in Environmental Toxicology and Drug Discovery.
    Yang H; Lou C; Li W; Liu G; Tang Y
    Chem Res Toxicol; 2020 Jun; 33(6):1312-1322. PubMed ID: 32091207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Corrigendum:
    Yang H; Sun L; Li W; Liu G; Tang Y
    Front Chem; 2018; 6():129. PubMed ID: 29688231
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In silico prediction of chemical-induced hematotoxicity with machine learning and deep learning methods.
    Hua Y; Shi Y; Cui X; Li X
    Mol Divers; 2021 Aug; 25(3):1585-1596. PubMed ID: 34196933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SApredictor: An Expert System for Screening Chemicals Against Structural Alerts.
    Hua Y; Cui X; Liu B; Shi Y; Guo H; Zhang R; Li X
    Front Chem; 2022; 10():916614. PubMed ID: 35910729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [AI-based QSAR Modeling for Prediction of Active Compounds in MIE/AOP].
    Uesawa Y
    Yakugaku Zasshi; 2020; 140(4):499-505. PubMed ID: 32238631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In silico prediction of chemical reproductive toxicity using machine learning.
    Jiang C; Yang H; Di P; Li W; Tang Y; Liu G
    J Appl Toxicol; 2019 Jun; 39(6):844-854. PubMed ID: 30687929
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction and mechanistic analysis of drug-induced liver injury (DILI) based on chemical structure.
    Liu A; Walter M; Wright P; Bartosik A; Dolciami D; Elbasir A; Yang H; Bender A
    Biol Direct; 2021 Jan; 16(1):6. PubMed ID: 33461600
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In silico prediction of drug-induced rhabdomyolysis with machine-learning models and structural alerts.
    Cui X; Liu J; Zhang J; Wu Q; Li X
    J Appl Toxicol; 2019 Aug; 39(8):1224-1232. PubMed ID: 31006880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A compilation of safety impact information for extractables associated with materials used in pharmaceutical packaging, delivery, administration, and manufacturing systems.
    Jenke D; Carlson T
    PDA J Pharm Sci Technol; 2014; 68(5):407-55. PubMed ID: 25336416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ToxAlerts: a Web server of structural alerts for toxic chemicals and compounds with potential adverse reactions.
    Sushko I; Salmina E; Potemkin VA; Poda G; Tetko IV
    J Chem Inf Model; 2012 Aug; 52(8):2310-6. PubMed ID: 22876798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine Learning-Based Modeling of Drug Toxicity.
    Lu J; Lu D; Fu Z; Zheng M; Luo X
    Methods Mol Biol; 2018; 1754():247-264. PubMed ID: 29536448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Overview of Machine Learning and Big Data for Drug Toxicity Evaluation.
    Vo AH; Van Vleet TR; Gupta RR; Liguori MJ; Rao MS
    Chem Res Toxicol; 2020 Jan; 33(1):20-37. PubMed ID: 31625725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In silico Prediction of Drug Induced Liver Toxicity Using Substructure Pattern Recognition Method.
    Zhang C; Cheng F; Li W; Liu G; Lee PW; Tang Y
    Mol Inform; 2016 Apr; 35(3-4):136-44. PubMed ID: 27491923
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Applications of Machine Learning Methods in Drug Toxicity Prediction.
    Zhang L; Zhang H; Ai H; Hu H; Li S; Zhao J; Liu H
    Curr Top Med Chem; 2018; 18(12):987-997. PubMed ID: 30051792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling and insights into the structural characteristics of drug-induced autoimmune diseases.
    Guo H; Zhang P; Zhang R; Hua Y; Zhang P; Cui X; Huang X; Li X
    Front Immunol; 2022; 13():1015409. PubMed ID: 36353637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Drug-drug interaction prediction: databases, web servers and computational models.
    Zhao Y; Yin J; Zhang L; Zhang Y; Chen X
    Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 38113076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine Learning for Predicting Risk of Drug-Induced Autoimmune Diseases by Structural Alerts and Daily Dose.
    Wu Y; Zhu J; Fu P; Tong W; Hong H; Chen M
    Int J Environ Res Public Health; 2021 Jul; 18(13):. PubMed ID: 34281077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In silico prediction of chemical acute contact toxicity on honey bees via machine learning methods.
    Xu X; Zhao P; Wang Z; Zhang X; Wu Z; Li W; Tang Y; Liu G
    Toxicol In Vitro; 2021 Apr; 72():105089. PubMed ID: 33444712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.