These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 29516110)
21. Structure of the retinal chromophore in the hRL intermediate of halorhodopsin from resonance raman spectroscopy. Fodor SP; Bogomolni RA; Mathies RA Biochemistry; 1987 Oct; 26(21):6775-8. PubMed ID: 3427042 [TBL] [Abstract][Full Text] [Related]
22. Structural changes in bacteriorhodopsin during ion transport at 2 angstrom resolution. Luecke H; Schobert B; Richter HT; Cartailler JP; Lanyi JK Science; 1999 Oct; 286(5438):255-61. PubMed ID: 10514362 [TBL] [Abstract][Full Text] [Related]
23. Free-energy simulations of the retinal cis --> trans isomerization in bacteriorhodopsin. Hermone A; Kuczera K Biochemistry; 1998 Mar; 37(9):2843-53. PubMed ID: 9485435 [TBL] [Abstract][Full Text] [Related]
24. Pressure-induced isomerization of retinal on bacteriorhodopsin as disclosed by fast magic angle spinning NMR. Kawamura I; Degawa Y; Yamaguchi S; Nishimura K; Tuzi S; Saitô H; Naito A Photochem Photobiol; 2007; 83(2):346-50. PubMed ID: 17076543 [TBL] [Abstract][Full Text] [Related]
25. Key role of electrostatic interactions in bacteriorhodopsin proton transfer. Bondar AN; Fischer S; Smith JC; Elstner M; Suhai S J Am Chem Soc; 2004 Nov; 126(44):14668-77. PubMed ID: 15521787 [TBL] [Abstract][Full Text] [Related]
26. Coupling photoisomerization of retinal to directional transport in bacteriorhodopsin. Luecke H; Schobert B; Cartailler JP; Richter HT; Rosengarth A; Needleman R; Lanyi JK J Mol Biol; 2000 Jul; 300(5):1237-55. PubMed ID: 10903866 [TBL] [Abstract][Full Text] [Related]
27. Molecular dynamics study of the M412 intermediate of bacteriorhodopsin. Xu D; Sheves M; Schulten K Biophys J; 1995 Dec; 69(6):2745-60. PubMed ID: 8599681 [TBL] [Abstract][Full Text] [Related]
28. Partitioning of free energy gain between the photoisomerized retinal and the protein in bacteriorhodopsin. Dioumaev AK; Brown LS; Needleman R; Lanyi JK Biochemistry; 1998 Jul; 37(28):9889-93. PubMed ID: 9665693 [TBL] [Abstract][Full Text] [Related]
29. Light isomerizes the chromophore of bacteriorhodopsin. Tsuda M; Glaccum M; Nelson B; Ebrey TG Nature; 1980 Sep; 287(5780):351-3. PubMed ID: 7421996 [TBL] [Abstract][Full Text] [Related]
30. Determination of retinal chromophore structure in bacteriorhodopsin with resonance Raman spectroscopy. Smith SO; Lugtenburg J; Mathies RA J Membr Biol; 1985; 85(2):95-109. PubMed ID: 4009698 [TBL] [Abstract][Full Text] [Related]
31. The structures of bacteriorhodopsin with different retinal-Schiff base orientations--computer modeling and energy minimization studies. Sankararamakrishnan R; Vishveshwara S J Biomol Struct Dyn; 1992 Jun; 9(6):1073-95. PubMed ID: 1637503 [TBL] [Abstract][Full Text] [Related]
32. Resonance Raman spectra of bacteriorhodopsin's primary photoproduct: evidence for a distorted 13-cis retinal chromophore. Braiman M; Mathies R Proc Natl Acad Sci U S A; 1982 Jan; 79(2):403-7. PubMed ID: 6281770 [TBL] [Abstract][Full Text] [Related]
33. Quantum dynamics of the femtosecond photoisomerization of retinal in bacteriorhodopsin. Ben-Nun M; Molnar F; Lu H; Phillips JC; MartÃnez TJ; Schulten K Faraday Discuss; 1998; (110):447-62; discussion 477-520. PubMed ID: 10822594 [TBL] [Abstract][Full Text] [Related]
34. Suppression of the back proton-transfer from Asp85 to the retinal Schiff base in bacteriorhodopsin: a theoretical analysis of structural elements. Bondar AN; Suhai S; Fischer S; Smith JC; Elstner M J Struct Biol; 2007 Mar; 157(3):454-69. PubMed ID: 17189704 [TBL] [Abstract][Full Text] [Related]
35. Between the ground- and M-state of bacteriorhodopsin the retinal transition dipole moment tilts out of the plane of the membrane by only 3 degrees. Otto H; Heyn MP FEBS Lett; 1991 Nov; 293(1-2):111-4. PubMed ID: 1959640 [TBL] [Abstract][Full Text] [Related]
36. Water molecule rearrangements around Leu93 and Trp182 in the formation of the L intermediate in bacteriorhodopsin's photocycle. Maeda A; Tomson FL; Gennis RB; Balashov SP; Ebrey TG Biochemistry; 2003 Mar; 42(9):2535-41. PubMed ID: 12614147 [TBL] [Abstract][Full Text] [Related]
37. Polarization effects stabilize bacteriorhodopsin's chromophore binding pocket: a molecular dynamics study. Babitzki G; Denschlag R; Tavan P J Phys Chem B; 2009 Jul; 113(30):10483-95. PubMed ID: 19719289 [TBL] [Abstract][Full Text] [Related]
38. Reducing the flexibility of retinal restores a wild-type-like photocycle in bacteriorhodopsin mutants defective in protein-retinal coupling. Delaney JK; Yahalom G; Sheves M; Subramaniam S Proc Natl Acad Sci U S A; 1997 May; 94(10):5028-33. PubMed ID: 9144184 [TBL] [Abstract][Full Text] [Related]
39. Crystallographic structures of the M and N intermediates of bacteriorhodopsin: assembly of a hydrogen-bonded chain of water molecules between Asp-96 and the retinal Schiff base. Schobert B; Brown LS; Lanyi JK J Mol Biol; 2003 Jul; 330(3):553-70. PubMed ID: 12842471 [TBL] [Abstract][Full Text] [Related]
40. Is the photoinduced isomerization in retinal protonated Schiff bases a single- or double-torsional process? Szymczak JJ; Barbatti M; Lischka H J Phys Chem A; 2009 Oct; 113(43):11907-18. PubMed ID: 19653674 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]