These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 29516185)

  • 1. Effect of grain boundary complexions on the deformation behavior of Ni bicrystal during bending creep.
    Reddy KV; Pal S
    J Mol Model; 2018 Mar; 24(4):87. PubMed ID: 29516185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of reorganization of a nanocrystalline grain boundary network during biaxial creep deformation of nanocrystalline Ni using molecular dynamics simulation.
    Pal S; Meraj M
    J Mol Model; 2019 Aug; 25(9):282. PubMed ID: 31468178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dynamics simulation on creep-ratcheting behavior of columnar nanocrystalline aluminum.
    Babu PN; Pal S
    J Mol Graph Model; 2023 Jan; 118():108376. PubMed ID: 36413920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular Dynamics Simulation of High-Temperature Creep Behavior of Nickel Polycrystalline Nanopillars.
    Xu X; Binkele P; Verestek W; Schmauder S
    Molecules; 2021 Apr; 26(9):. PubMed ID: 33946981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of Mo Segregation at Grain Boundaries on the High Temperature Creep Behavior of Ni-Mo Alloys: An Atomistic Study.
    Li Q; Zhang J; Tang H; Zhang H; Ye H; Zheng Y
    Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural Evolution and Transitions of Mechanisms in Creep Deformation of Nanocrystalline FeCrAl Alloys.
    Yao H; Ye T; Wang P; Wu J; Zhang J; Chen P
    Nanomaterials (Basel); 2023 Feb; 13(4):. PubMed ID: 36839000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The microstructure and creep behavior of cold rolled udimet 188 sheet.
    Boehlert CJ; Longanbach SC
    Microsc Microanal; 2011 Jun; 17(3):350-61. PubMed ID: 21205424
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular Dynamics Simulation on Creep Behavior of Nanocrystalline TiAl Alloy.
    Zhao F; Zhang J; He C; Zhang Y; Gao X; Xie L
    Nanomaterials (Basel); 2020 Aug; 10(9):. PubMed ID: 32872153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanically Driven Grain Boundary Formation in Nickel Nanowires.
    Wang L; Kong D; Zhang Y; Xiao L; Lu Y; Chen Z; Zhang Z; Zou J; Zhu T; Han X
    ACS Nano; 2017 Dec; 11(12):12500-12508. PubMed ID: 29131584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shift of Creep Mechanism in Nanocrystalline NiAl Alloy.
    Sun Z; Liu B; He C; Xie L; Peng Q
    Materials (Basel); 2019 Aug; 12(16):. PubMed ID: 31394760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibiting creep in nanograined alloys with stable grain boundary networks.
    Zhang BB; Tang YG; Mei QS; Li XY; Lu K
    Science; 2022 Nov; 378(6620):659-663. PubMed ID: 36356141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superior high creep resistance of in situ nano-sized TiC
    Wang L; Qiu F; Zhao Q; Zha M; Jiang Q
    Sci Rep; 2017 Jul; 7(1):4540. PubMed ID: 28674452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nano-scale simulation based study of creep behavior of bimodal nanocrystalline face centered cubic metal.
    Meraj M; Pal S
    J Mol Model; 2017 Oct; 23(11):309. PubMed ID: 29018998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The shear response of copper bicrystals with Σ11 symmetric and asymmetric tilt grain boundaries by molecular dynamics simulation.
    Zhang L; Lu C; Tieu K; Zhao X; Pei L
    Nanoscale; 2015 Apr; 7(16):7224-33. PubMed ID: 25811909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coupled grain boundary motion in aluminium: the effect of structural multiplicity.
    Cheng K; Zhang L; Lu C; Tieu K
    Sci Rep; 2016 May; 6():25427. PubMed ID: 27140343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of serrated grain boundary on tensile and creep properties of a precipitation strengthened high entropy alloy.
    Lee JL; Wang PT; Lo KC; Shen PK; Tsou NT; Kakehi K; Murakami H; Tsai CW; Gorsse S; Yeh AC
    Sci Technol Adv Mater; 2023; 24(1):2158043. PubMed ID: 36684848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dislocation-accommodated grain boundary sliding as the major deformation mechanism of olivine in the Earth's upper mantle.
    Ohuchi T; Kawazoe T; Higo Y; Funakoshi K; Suzuki A; Kikegawa T; Irifune T
    Sci Adv; 2015 Oct; 1(9):e1500360. PubMed ID: 26601281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tensile creep behavior and mechanism of CoCrFeMnNi high entropy alloy.
    Song C; Li G; Li G; Zhang G; Cai B
    Micron; 2021 Nov; 150():103144. PubMed ID: 34534922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microstructure and Creep Properties of Boron- and Zirconium-Containing Cobalt-based Superalloys.
    Bocchini PJ; Sudbrack CK; Noebe RD; Dunand DC; Seidman DN
    Mater Sci Eng A Struct Mater; 2016 Nov; 682():260-269. PubMed ID: 32020989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of dislocations, twins, and stacking faults on the fracture behavior of nanocrystalline Ni nanowire under constant bending load: a molecular dynamics study.
    Reddy KV; Pal S
    J Mol Model; 2018 Sep; 24(10):277. PubMed ID: 30196452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.