These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
628 related articles for article (PubMed ID: 29516417)
1. Genome Editing in Stem Cells for Disease Therapeutics. Song M; Ramakrishna S Mol Biotechnol; 2018 Apr; 60(4):329-338. PubMed ID: 29516417 [TBL] [Abstract][Full Text] [Related]
2. Genome editing: a robust technology for human stem cells. Chandrasekaran AP; Song M; Ramakrishna S Cell Mol Life Sci; 2017 Sep; 74(18):3335-3346. PubMed ID: 28405721 [TBL] [Abstract][Full Text] [Related]
3. Non-viral delivery of genome-editing nucleases for gene therapy. Wang M; Glass ZA; Xu Q Gene Ther; 2017 Mar; 24(3):144-150. PubMed ID: 27797355 [TBL] [Abstract][Full Text] [Related]
4. Genome editing: the road of CRISPR/Cas9 from bench to clinic. Eid A; Mahfouz MM Exp Mol Med; 2016 Oct; 48(10):e265. PubMed ID: 27741224 [TBL] [Abstract][Full Text] [Related]
5. Gene targeting technologies in rats: zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats. Mashimo T Dev Growth Differ; 2014 Jan; 56(1):46-52. PubMed ID: 24372523 [TBL] [Abstract][Full Text] [Related]
6. Recent advances in stem cells and gene editing: Drug discovery and therapeutics. Bayarsaikhan D; Bayarsaikhan G; Lee B Prog Mol Biol Transl Sci; 2021; 181():231-269. PubMed ID: 34127195 [TBL] [Abstract][Full Text] [Related]
8. Efficient Genome Editing in Induced Pluripotent Stem Cells with Engineered Nucleases In Vitro. Termglinchan V; Seeger T; Chen C; Wu JC; Karakikes I Methods Mol Biol; 2017; 1521():55-68. PubMed ID: 27910041 [TBL] [Abstract][Full Text] [Related]
9. Basics of genome editing technology and its application in livestock species. Petersen B Reprod Domest Anim; 2017 Aug; 52 Suppl 3():4-13. PubMed ID: 28815851 [TBL] [Abstract][Full Text] [Related]
10. Genome Editing in Human Pluripotent Stem Cells. Carlson-Stevermer J; Saha K Methods Mol Biol; 2017; 1590():165-174. PubMed ID: 28353269 [TBL] [Abstract][Full Text] [Related]
11. A history of genome editing in mammals. Fernández A; Josa S; Montoliu L Mamm Genome; 2017 Aug; 28(7-8):237-246. PubMed ID: 28589393 [TBL] [Abstract][Full Text] [Related]
12. Genome editing technologies to fight infectious diseases. Trevisan M; Palù G; Barzon L Expert Rev Anti Infect Ther; 2017 Nov; 15(11):1001-1013. PubMed ID: 29090592 [TBL] [Abstract][Full Text] [Related]
13. Applications of Alternative Nucleases in the Age of CRISPR/Cas9. Guha TK; Edgell DR Int J Mol Sci; 2017 Nov; 18(12):. PubMed ID: 29186020 [TBL] [Abstract][Full Text] [Related]
14. Developmental history and application of CRISPR in human disease. Liang P; Zhang X; Chen Y; Huang J J Gene Med; 2017 Jun; 19(6-7):. PubMed ID: 28623876 [TBL] [Abstract][Full Text] [Related]
15. Genome editing comes of age. Kim JS Nat Protoc; 2016 Sep; 11(9):1573-8. PubMed ID: 27490630 [TBL] [Abstract][Full Text] [Related]
16. Designed nucleases for targeted genome editing. Lee J; Chung JH; Kim HM; Kim DW; Kim H Plant Biotechnol J; 2016 Feb; 14(2):448-62. PubMed ID: 26369767 [TBL] [Abstract][Full Text] [Related]
17. CRISPR/Cas9: an advanced tool for editing plant genomes. Samanta MK; Dey A; Gayen S Transgenic Res; 2016 Oct; 25(5):561-73. PubMed ID: 27012546 [TBL] [Abstract][Full Text] [Related]
18. [Genome-editing: focus on the off-target effects]. He X; Gu F Sheng Wu Gong Cheng Xue Bao; 2017 Oct; 33(10):1757-1775. PubMed ID: 29082723 [TBL] [Abstract][Full Text] [Related]
19. A beginner's guide to gene editing. Harrison PT; Hart S Exp Physiol; 2018 Apr; 103(4):439-448. PubMed ID: 29282799 [TBL] [Abstract][Full Text] [Related]
20. Using Gene Editing Approaches to Fine-Tune the Immune System. Pavlovic K; Tristán-Manzano M; Maldonado-Pérez N; Cortijo-Gutierrez M; Sánchez-Hernández S; Justicia-Lirio P; Carmona MD; Herrera C; Martin F; Benabdellah K Front Immunol; 2020; 11():570672. PubMed ID: 33117361 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]