BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 29516690)

  • 1. Caries detection and quantification around stained pits and fissures in occlusal tooth surfaces with fluorescence.
    Lee HS; Kim SK; Park SW; de Josselin de Jong E; Kwon HK; Jeong SH; Kim BI
    J Biomed Opt; 2018 Mar; 23(9):1-7. PubMed ID: 29516690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The performance of conventional and fluorescence-based methods for occlusal caries detection: an in vivo study with histologic validation.
    Diniz MB; Boldieri T; Rodrigues JA; Santos-Pinto L; Lussi A; Cordeiro RC
    J Am Dent Assoc; 2012 Apr; 143(4):339-50. PubMed ID: 22467694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of Dental Caries and Cracks with Quantitative Light-Induced Fluorescence in Comparison to Radiographic and Visual Examination: A Retrospective Case Study.
    Oh SH; Lee SR; Choi JY; Choi YS; Kim SH; Yoon HC; Nelson G
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33802443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correlation between fissure discoloration, Diagnodent measurements, and caries depth: an in vitro study.
    Francescut P; Lussi A
    Pediatr Dent; 2003; 25(6):559-64. PubMed ID: 14733470
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of pit-and-fissure discoloration in caries assessment.
    Christensen RP; Ploeger BJ; Palmer TM
    Compend Contin Educ Dent; 2001 Nov; 22(11A):996-1002, 1004-7; quiz 1044. PubMed ID: 11915646
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a fluorescence-image scoring system for assessing noncavitated occlusal caries.
    Jung EH; Lee ES; Jung HI; Kang SM; de Josselin de Jong E; Kim BI
    Photodiagnosis Photodyn Ther; 2018 Mar; 21():36-42. PubMed ID: 29102651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Near-infrared imaging of demineralization on the occlusal surfaces of teeth without the interference of stains.
    Ng C; Almaz E; Simon J; Fried D; Darling C
    J Biomed Opt; 2019 Mar; 24(3):1-8. PubMed ID: 30834721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative light-induced fluorescence (QLF): a tool for early occlusal dental caries detection and supporting decision making in vivo.
    Alammari MR; Smith PW; de Josselin de Jong E; Higham SM
    J Dent; 2013 Feb; 41(2):127-32. PubMed ID: 22940557
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monitoring enamel caries on resin-treated occlusal surfaces using quantitative light-induced fluorescence: an in vitro study.
    Silva FG; Freitas PM; Mendes FM; de Novaes TF; Diniz MB; Oliveira Guaré R
    Lasers Med Sci; 2020 Sep; 35(7):1629-1636. PubMed ID: 32382936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An in vivo comparison of radiographic and directly assessed clinical caries status of posterior approximal surfaces in primary and permanent teeth.
    Pitts NB; Rimmer PA
    Caries Res; 1992; 26(2):146-52. PubMed ID: 1521308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative study to quantify demineralized enamel in deciduous and permanent teeth using laser- and light-induced fluorescence techniques.
    Ando M; van Der Veen MH; Schemehorn BR; Stookey GK
    Caries Res; 2001; 35(6):464-70. PubMed ID: 11799288
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro evaluation of the Spectra early caries detection system.
    Graye M; Markowitz K; Strickland M; Guzy G; Burke M; Houpt M
    J Clin Dent; 2012; 23(1):1-6. PubMed ID: 22435317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tooth caries classification with quantitative light-induced fluorescence (QLF) images using convolutional neural network for permanent teeth in vivo.
    Park EY; Jeong S; Kang S; Cho J; Cho JY; Kim EK
    BMC Oral Health; 2023 Dec; 23(1):981. PubMed ID: 38066624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of tooth wear based on autofluorescence properties measured using the QLF technology in vitro.
    Lee HS; Lee YD; Kim SK; Choi JH; Kim BI
    Photodiagnosis Photodyn Ther; 2019 Mar; 25():265-270. PubMed ID: 30611863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validity of probing for fissure caries diagnosis.
    Penning C; van Amerongen JP; Seef RE; ten Cate JM
    Caries Res; 1992; 26(6):445-9. PubMed ID: 1294305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance of laser fluorescence for the detection of enamel caries in non-cavitated occlusal surfaces: clinical study with total validation of the sample.
    Abalos C; Mendoza A; Jimenez-Planas A; Guerrero E; Chaparro A; Garcia-Godoy F
    Am J Dent; 2012 Feb; 25(1):44-8. PubMed ID: 22558692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection and Analysis of Enamel Cracks by Quantitative Light-induced Fluorescence Technology.
    Jun MK; Ku HM; Kim E; Kim HE; Kwon HK; Kim BI
    J Endod; 2016 Mar; 42(3):500-4. PubMed ID: 26794344
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro evaluation of the influence of air abrasion on detection of occlusal caries lesions in primary teeth.
    Rodrigues Jde A; de Vita TM; Cordeiro Rde C
    Pediatr Dent; 2008; 30(1):15-8. PubMed ID: 18402093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro Detection of Occlusal Caries on Permanent Teeth by a Visual, Light-Induced Fluorescence and Photothermal Radiometry and Modulated Luminescence Methods.
    Jallad M; Zero D; Eckert G; Ferreira Zandona A
    Caries Res; 2015; 49(5):523-30. PubMed ID: 26316073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An in vitro assessment of the extent of caries under small occlusal cavities.
    van Amerongen JP; Penning C; Kidd EA; ten Cate JM
    Caries Res; 1992; 26(2):89-93. PubMed ID: 1521311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.