These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 29516739)

  • 1. Synthesis of 2,6,7-Trisubstituted Prenylated indole.
    Shiozawa M; Iida K; Odagi M; Yamanaka M; Nagasawa K
    J Org Chem; 2018 Jul; 83(13):7276-7280. PubMed ID: 29516739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facile Installation of 2-Reverse Prenyl Functionality into Indoles by a Tandem N-Alkylation-Aza-Cope Rearrangement Reaction and Its Application in Synthesis.
    Chen X; Fan H; Zhang S; Yu C; Wang W
    Chemistry; 2016 Jan; 22(2):716-23. PubMed ID: 26586470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Total Synthesis of (+)-okaramine J featuring an exceptionally facile N-reverse-prenyl to C-prenyl aza-Claisen rearrangement.
    Roe JM; Webster RA; Ganesan A
    Org Lett; 2003 Aug; 5(16):2825-7. PubMed ID: 12889884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Asymmetric Synthesis of the Aromatic Fragment of Sespendole.
    Ono Y; Nakazaki A; Ueki K; Higuchi K; Sriphana U; Adachi M; Nishikawa T
    J Org Chem; 2019 Aug; 84(15):9750-9757. PubMed ID: 31266301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prenylated indole derivatives from fungi: structure diversity, biological activities, biosynthesis and chemoenzymatic synthesis.
    Li SM
    Nat Prod Rep; 2010 Jan; 27(1):57-78. PubMed ID: 20024094
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoredox-catalyzed diastereoselective dearomative prenylation and reverse-prenylation of electron-deficient indole derivatives.
    Chang X; Zhang F; Zhu S; Yang Z; Feng X; Liu Y
    Nat Commun; 2023 Jun; 14(1):3876. PubMed ID: 37391418
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unified total synthesis of amorfrutins A and C via the Claisen rearrangement.
    Fujita T; Kuwahara S; Ogura Y
    Biosci Biotechnol Biochem; 2019 Sep; 83(9):1635-1641. PubMed ID: 31130067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regioselective cope rearrangement and prenyl transfers on indole scaffold mimicking fungal and bacterial dimethylallyltryptophan synthases.
    Thandavamurthy K; Sharma D; Porwal SK; Ray D; Viswanathan R
    J Org Chem; 2014 Nov; 79(21):10049-67. PubMed ID: 25244629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Divergent syntheses of okaramines C, J, L, and S-U.
    Li XW; Si TX; Liu YP; Wang MZ; Chan ASC
    Org Biomol Chem; 2020 May; 18(20):3848-3852. PubMed ID: 32400817
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Indole prenylation in alkaloid synthesis.
    Lindel T; Marsch N; Adla SK
    Top Curr Chem; 2012; 309():67-129. PubMed ID: 21915778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. STUDIES ON THE BIOSYNTHESIS OF THE STEPHACIDINS AND NOTOAMIDES. TOTAL SYNTHESIS OF NOTOAMIDE S.
    McAfoos TJ; Li S; Tsukamoto S; Sherman DH; Williams RM
    Heterocycles; 2010 Dec; 82(1):461-472. PubMed ID: 21796227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aromatic Claisen Rearrangements of O-prenylated tyrosine and model prenyl aryl ethers: Computational study of the role of water on acceleration of Claisen rearrangements.
    Osuna S; Kim S; Bollot G; Houk KN
    European J Org Chem; 2013 May; 2013(14):. PubMed ID: 24376368
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    Offerman SC; Kadirvel M; Abusara OH; Bryant JL; Telfer BA; Brown G; Freeman S; White A; Williams KJ; Aojula HS
    Medchemcomm; 2017 Mar; 8(3):551-558. PubMed ID: 30108771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential rearrangements in the reaction catalyzed by the indole prenyltransferase FtmPT1.
    Mahmoodi N; Tanner ME
    Chembiochem; 2013 Oct; 14(15):2029-37. PubMed ID: 24014462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The cancer preventive activity and mechanisms of prenylated resveratrol and derivatives.
    Zhou T; Jiang Y; Zeng B; Yang B
    Curr Res Toxicol; 2023; 5():100113. PubMed ID: 37519844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impacts and perspectives of prenyltransferases of the DMATS superfamily for use in biotechnology.
    Fan A; Winkelblech J; Li SM
    Appl Microbiol Biotechnol; 2015 Sep; 99(18):7399-415. PubMed ID: 26227408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanistic studies on the indole prenyltransferases.
    Tanner ME
    Nat Prod Rep; 2015 Jan; 32(1):88-101. PubMed ID: 25270661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure-guided Mutagenesis Reveals the Catalytic Residue that Controls the Regiospecificity of C6-Indole Prenyltransferases.
    Aoun AR; Mupparapu N; Nguyen DN; Kim TH; Nguyen CM; Pan Z; Elshahawi SI
    ChemCatChem; 2023 Jun; 15(11):. PubMed ID: 37366495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antioxidant activity of unexplored indole derivatives: synthesis and screening.
    Estevão MS; Carvalho LC; Ribeiro D; Couto D; Freitas M; Gomes A; Ferreira LM; Fernandes E; Marques MM
    Eur J Med Chem; 2010 Nov; 45(11):4869-78. PubMed ID: 20727623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A unified strategy to reverse-prenylated indole alkaloids: total syntheses of preparaherquamide, premalbrancheamide, and (+)-VM-55599.
    Roque JB; Mercado-Marin EV; Richter SC; Pereira de Sant'Ana D; Mukai K; Ye Y; Sarpong R
    Chem Sci; 2020 Jun; 11(23):5929-5934. PubMed ID: 32953008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.