These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Modeling the stability of polygonal patterns of vortices at the poles of Jupiter as revealed by the Li C; Ingersoll AP; Klipfel AP; Brettle H Proc Natl Acad Sci U S A; 2020 Sep; 117(39):24082-24087. PubMed ID: 32900956 [TBL] [Abstract][Full Text] [Related]
3. Jupiter's interior and deep atmosphere: The initial pole-to-pole passes with the Juno spacecraft. Bolton SJ; Adriani A; Adumitroaie V; Allison M; Anderson J; Atreya S; Bloxham J; Brown S; Connerney JEP; DeJong E; Folkner W; Gautier D; Grassi D; Gulkis S; Guillot T; Hansen C; Hubbard WB; Iess L; Ingersoll A; Janssen M; Jorgensen J; Kaspi Y; Levin SM; Li C; Lunine J; Miguel Y; Mura A; Orton G; Owen T; Ravine M; Smith E; Steffes P; Stone E; Stevenson D; Thorne R; Waite J; Durante D; Ebert RW; Greathouse TK; Hue V; Parisi M; Szalay JR; Wilson R Science; 2017 May; 356(6340):821-825. PubMed ID: 28546206 [TBL] [Abstract][Full Text] [Related]
4. Computer simulations of Jupiter's deep internal dynamics help interpret what Juno sees. Glatzmaier GA Proc Natl Acad Sci U S A; 2018 Jul; 115(27):6896-6904. PubMed ID: 29941563 [TBL] [Abstract][Full Text] [Related]
5. Jupiter's magnetosphere and aurorae observed by the Juno spacecraft during its first polar orbits. Connerney JEP; Adriani A; Allegrini F; Bagenal F; Bolton SJ; Bonfond B; Cowley SWH; Gerard JC; Gladstone GR; Grodent D; Hospodarsky G; Jorgensen JL; Kurth WS; Levin SM; Mauk B; McComas DJ; Mura A; Paranicas C; Smith EJ; Thorne RM; Valek P; Waite J Science; 2017 May; 356(6340):826-832. PubMed ID: 28546207 [TBL] [Abstract][Full Text] [Related]
6. Prevalent lightning sferics at 600 megahertz near Jupiter's poles. Brown S; Janssen M; Adumitroaie V; Atreya S; Bolton S; Gulkis S; Ingersoll A; Levin S; Li C; Li L; Lunine J; Misra S; Orton G; Steffes P; Tabataba-Vakili F; Kolmašová I; Imai M; Santolík O; Kurth W; Hospodarsky G; Gurnett D; Connerney J Nature; 2018 Jun; 558(7708):87-90. PubMed ID: 29875484 [TBL] [Abstract][Full Text] [Related]
7. Simulation of equatorial and high-latitude jets on Jupiter in a deep convection model. Heimpel M; Aurnou J; Wicht J Nature; 2005 Nov; 438(7065):193-6. PubMed ID: 16281029 [TBL] [Abstract][Full Text] [Related]
8. A strong decrease in Saturn's equatorial jet at cloud level. Sánchez-Lavega A; Pérez-Hoyos S; Rojas JF; Hueso R; French RG Nature; 2003 Jun; 423(6940):623-5. PubMed ID: 12789333 [TBL] [Abstract][Full Text] [Related]
9. Deep rotating convection generates the polar hexagon on Saturn. Yadav RK; Bloxham J Proc Natl Acad Sci U S A; 2020 Jun; 117(25):13991-13996. PubMed ID: 32513703 [TBL] [Abstract][Full Text] [Related]
10. A complex dynamo inferred from the hemispheric dichotomy of Jupiter's magnetic field. Moore KM; Yadav RK; Kulowski L; Cao H; Bloxham J; Connerney JEP; Kotsiaros S; Jørgensen JL; Merayo JMG; Stevenson DJ; Bolton SJ; Levin SM Nature; 2018 Sep; 561(7721):76-78. PubMed ID: 30185957 [TBL] [Abstract][Full Text] [Related]
11. Heating of Jupiter's upper atmosphere above the Great Red Spot. O'Donoghue J; Moore L; Stallard TS; Melin H Nature; 2016 Aug; 536(7615):190-2. PubMed ID: 27462811 [TBL] [Abstract][Full Text] [Related]
12. Jupiter's Great Red Spot and zonal winds as a self-consistent, one-layer, quasigeostrophic flow. Marcus PS; Lee C Chaos; 1994 Jun; 4(2):269-286. PubMed ID: 12780104 [TBL] [Abstract][Full Text] [Related]
13. Cassini imaging of Jupiter's atmosphere, satellites, and rings. Porco CC; West RA; McEwen A; Del Genio AD; Ingersoll AP; Thomas P; Squyres S; Dones L; Murray CD; Johnson TV; Burns JA; Brahic A; Neukum G; Veverka J; Barbara JM; Denk T; Evans M; Ferrier JJ; Geissler P; Helfenstein P; Roatsch T; Throop H; Tiscareno M; Vasavada AR Science; 2003 Mar; 299(5612):1541-7. PubMed ID: 12624258 [TBL] [Abstract][Full Text] [Related]
14. Quenching of zonal winds in Jupiter's interior. Christensen UR; Wulff PN Proc Natl Acad Sci U S A; 2024 Jun; 121(25):e2402859121. PubMed ID: 38857406 [TBL] [Abstract][Full Text] [Related]
15. Measurement of Jupiter's asymmetric gravity field. Iess L; Folkner WM; Durante D; Parisi M; Kaspi Y; Galanti E; Guillot T; Hubbard WB; Stevenson DJ; Anderson JD; Buccino DR; Casajus LG; Milani A; Park R; Racioppa P; Serra D; Tortora P; Zannoni M; Cao H; Helled R; Lunine JI; Miguel Y; Militzer B; Wahl S; Connerney JEP; Levin SM; Bolton SJ Nature; 2018 Mar; 555(7695):220-222. PubMed ID: 29517001 [TBL] [Abstract][Full Text] [Related]
16. A suppression of differential rotation in Jupiter's deep interior. Guillot T; Miguel Y; Militzer B; Hubbard WB; Kaspi Y; Galanti E; Cao H; Helled R; Wahl SM; Iess L; Folkner WM; Stevenson DJ; Lunine JI; Reese DR; Biekman A; Parisi M; Durante D; Connerney JEP; Levin SM; Bolton SJ Nature; 2018 Mar; 555(7695):227-230. PubMed ID: 29517000 [TBL] [Abstract][Full Text] [Related]
17. Jupiter's zonal winds: are they bands of homogenized potential vorticity organized as a monotonic staircase? Marcus PS; Shetty S Philos Trans A Math Phys Eng Sci; 2011 Feb; 369(1937):771-95. PubMed ID: 21242133 [TBL] [Abstract][Full Text] [Related]
18. JUNO/JIRAM's view of Jupiter's H Dinelli BM; Adriani A; Mura A; Altieri F; Migliorini A; Moriconi ML Philos Trans A Math Phys Eng Sci; 2019 Sep; 377(2154):20180406. PubMed ID: 31378178 [TBL] [Abstract][Full Text] [Related]
19. Energy Exchanges in Saturn's Polar Regions From Cassini Observations: Eddy-Zonal Flow Interactions. Read PL; Antuñano A; Cabanes S; Colyer G; Gaztelurrutia TDR; Sanchez-Lavega A J Geophys Res Planets; 2022 May; 127(5):e2021JE006973. PubMed ID: 35860763 [TBL] [Abstract][Full Text] [Related]