These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 29517018)

  • 1. The mind-reading devices that can free paralysed muscles.
    Savage N
    Nature; 2018 Mar; 555(7695):S12-S14. PubMed ID: 29517018
    [No Abstract]   [Full Text] [Related]  

  • 2. [Neural interface systems: the future is (almost) here].
    Masse NY; Jarosiewicz B
    Med Sci (Paris); 2012 Nov; 28(11):932-4. PubMed ID: 23171895
    [No Abstract]   [Full Text] [Related]  

  • 3. Restoration of grasp following paralysis through brain-controlled stimulation of muscles.
    Ethier C; Oby ER; Bauman MJ; Miller LE
    Nature; 2012 May; 485(7398):368-71. PubMed ID: 22522928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuroscience: converting thoughts into action.
    Scott SH
    Nature; 2006 Jul; 442(7099):141-2. PubMed ID: 16838004
    [No Abstract]   [Full Text] [Related]  

  • 5. An EEG/EOG-based hybrid brain-neural computer interaction (BNCI) system to control an exoskeleton for the paralyzed hand.
    Soekadar SR; Witkowski M; Vitiello N; Birbaumer N
    Biomed Tech (Berl); 2015 Jun; 60(3):199-205. PubMed ID: 25490027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recapitulating flesh with silicon and steel: advancements in upper extremity robotic prosthetics.
    Lee B; Attenello FJ; Liu CY; McLoughlin MP; Apuzzo ML
    World Neurosurg; 2014; 81(5-6):730-41. PubMed ID: 24631910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brain-machine interfaces: assistive, thought-controlled devices.
    Niemeyer JE
    Lab Anim (NY); 2016 Sep; 45(10):359-61. PubMed ID: 27654684
    [No Abstract]   [Full Text] [Related]  

  • 8. Brain implants for substituting lost motor function: state of the art and potential impact on the lives of motor-impaired seniors.
    Ramsey NF; Aarnoutse EJ; Vansteensel MJ
    Gerontology; 2014; 60(4):366-72. PubMed ID: 24642607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brain-machine interface.
    Nair P
    Proc Natl Acad Sci U S A; 2013 Nov; 110(46):18343. PubMed ID: 24222678
    [No Abstract]   [Full Text] [Related]  

  • 10. Brain-controlled muscle stimulation for the restoration of motor function.
    Ethier C; Miller LE
    Neurobiol Dis; 2015 Nov; 83():180-90. PubMed ID: 25447224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enter the cyborgs. Promise and peril in a marriage of brains and silicon.
    Boyce N
    US News World Rep; 2002 May; 132(16):56-8. PubMed ID: 12026874
    [No Abstract]   [Full Text] [Related]  

  • 12. Current challenges to the clinical translation of brain machine interface technology.
    Lu CW; Patil PG; Chestek CA
    Int Rev Neurobiol; 2012; 107():137-60. PubMed ID: 23206681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ideas in movement: The next wave of brain-computer interfaces.
    Foley KE
    Nat Med; 2016 Jan; 22(1):2-5. PubMed ID: 26735396
    [No Abstract]   [Full Text] [Related]  

  • 14. Biomaterials. Electronic dura mater for long-term multimodal neural interfaces.
    Minev IR; Musienko P; Hirsch A; Barraud Q; Wenger N; Moraud EM; Gandar J; Capogrosso M; Milekovic T; Asboth L; Torres RF; Vachicouras N; Liu Q; Pavlova N; Duis S; Larmagnac A; Vörös J; Micera S; Suo Z; Courtine G; Lacour SP
    Science; 2015 Jan; 347(6218):159-63. PubMed ID: 25574019
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The future of upper extremity rehabilitation robotics: research and practice.
    Vu PP; Chestek CA; Nason SR; Kung TA; Kemp SWP; Cederna PS
    Muscle Nerve; 2020 Jun; 61(6):708-718. PubMed ID: 32413247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time evaluation of a noninvasive neuroprosthetic interface for control of reach.
    Corbett EA; Körding KP; Perreault EJ
    IEEE Trans Neural Syst Rehabil Eng; 2013 Jul; 21(4):674-83. PubMed ID: 23529107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of a neuroprosthesis for grasping using off-line classification of electrocorticographic signals: case study.
    Márquez-Chin C; Popovic MR; Cameron T; Lozano AM; Chen R
    Spinal Cord; 2009 Nov; 47(11):802-8. PubMed ID: 19381156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Functional rehabilitation of spinal cord injured persons using neuroprostheses].
    Rupp R; Abel R
    Orthopade; 2005 Feb; 34(2):144-51. PubMed ID: 15650822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct control of paralysed muscles by cortical neurons.
    Moritz CT; Perlmutter SI; Fetz EE
    Nature; 2008 Dec; 456(7222):639-42. PubMed ID: 18923392
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assistance Robotics and Biosensors.
    Torres F; Puente ST; Úbeda A
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30336595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.