These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Gene Editing for the Treatment of Hypercholesterolemia. Hoekstra M; Van Eck M Curr Atheroscler Rep; 2024 May; 26(5):139-146. PubMed ID: 38498115 [TBL] [Abstract][Full Text] [Related]
6. Cardiac Myoediting Attenuates Cardiac Abnormalities in Human and Mouse Models of Duchenne Muscular Dystrophy. Atmanli A; Chai AC; Cui M; Wang Z; Nishiyama T; Bassel-Duby R; Olson EN Circ Res; 2021 Sep; 129(6):602-616. PubMed ID: 34372664 [TBL] [Abstract][Full Text] [Related]
7. A Single CRISPR-Cas9 Deletion Strategy that Targets the Majority of DMD Patients Restores Dystrophin Function in hiPSC-Derived Muscle Cells. Young CS; Hicks MR; Ermolova NV; Nakano H; Jan M; Younesi S; Karumbayaram S; Kumagai-Cresse C; Wang D; Zack JA; Kohn DB; Nakano A; Nelson SF; Miceli MC; Spencer MJ; Pyle AD Cell Stem Cell; 2016 Apr; 18(4):533-40. PubMed ID: 26877224 [TBL] [Abstract][Full Text] [Related]
8. Application of CRISPR-Cas system in gene therapy: Pre-clinical progress in animal model. Guan L; Han Y; Zhu S; Lin J DNA Repair (Amst); 2016 Oct; 46():1-8. PubMed ID: 27519625 [TBL] [Abstract][Full Text] [Related]
9. Cautious welcome for gene editing of Duchenne muscular dystrophy in animal model. Hawkes N BMJ; 2016 Jan; 351():h7033. PubMed ID: 26729900 [No Abstract] [Full Text] [Related]
10. CRISPR editing as a therapeutic strategy for Duchenne muscular dystrophy-anti-Cas9 immune response casts its shadow over safety and efficacy. Dowling JJ Gene Ther; 2022 Nov; 29(10-11):575-577. PubMed ID: 35194186 [No Abstract] [Full Text] [Related]
11. VERVE-101, a CRISPR base-editing therapy designed to permanently inactivate hepatic PCSK9 and reduce LDL-cholesterol. Hooper AJ; Tang XL; Burnett JR Expert Opin Investig Drugs; 2024 Aug; 33(8):753-756. PubMed ID: 38878270 [No Abstract] [Full Text] [Related]
14. PCSK9 inhibitor therapy in homozygous familial defective apolipoprotein B-100 due to APOB R3500Q: A case report. Andersen L; Davis T; Testa H; Andersen RL J Clin Lipidol; 2017; 11(6):1471-1474. PubMed ID: 28988723 [TBL] [Abstract][Full Text] [Related]
15. Reduced Blood Lipid Levels With In Vivo CRISPR-Cas9 Base Editing of ANGPTL3. Chadwick AC; Evitt NH; Lv W; Musunuru K Circulation; 2018 Feb; 137(9):975-977. PubMed ID: 29483174 [No Abstract] [Full Text] [Related]
16. Adeno-Associated Virus-Mediated Delivery of CRISPR for Cardiac Gene Editing in Mice. Xu L; Gao Y; Lau YS; Han R J Vis Exp; 2018 Aug; (138):. PubMed ID: 30124643 [TBL] [Abstract][Full Text] [Related]
17. Neuromuscular disease: Genome editing shows promise in an in vivo model of Duchenne muscular dystrophy. Wood H Nat Rev Neurol; 2016 Feb; 12(2):63. PubMed ID: 26782331 [No Abstract] [Full Text] [Related]
18. Gene Editing for Duchenne Muscular Dystrophy Using the CRISPR/Cas9 Technology: The Importance of Fine-tuning the Approach. Tremblay JP; Iyombe-Engembe JP; DuchĂȘne B; Ouellet DL Mol Ther; 2016 Nov; 24(11):1888-1889. PubMed ID: 27916992 [No Abstract] [Full Text] [Related]
19. The promise and challenge of therapeutic genome editing. Doudna JA Nature; 2020 Feb; 578(7794):229-236. PubMed ID: 32051598 [TBL] [Abstract][Full Text] [Related]
20. The emerging role of viral vectors as vehicles for DMD gene editing. Maggio I; Chen X; Gonçalves MA Genome Med; 2016 May; 8(1):59. PubMed ID: 27215286 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]