BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 29517035)

  • 1. A CRISPR edit for heart disease.
    King A
    Nature; 2018 Mar; 555(7695):S23-S25. PubMed ID: 29517035
    [No Abstract]   [Full Text] [Related]  

  • 2. Role of angiopoietin-like 3 (ANGPTL3) in regulating plasma level of low-density lipoprotein cholesterol.
    Xu YX; Redon V; Yu H; Querbes W; Pirruccello J; Liebow A; Deik A; Trindade K; Wang X; Musunuru K; Clish CB; Cowan C; Fizgerald K; Rader D; Kathiresan S
    Atherosclerosis; 2018 Jan; 268():196-206. PubMed ID: 29183623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gene-Editing Technology Accelerates Cardiovascular Research: Clinical Applications Being Explored.
    Kuehn BM
    Circulation; 2018 Feb; 137(9):973-974. PubMed ID: 29483173
    [No Abstract]   [Full Text] [Related]  

  • 4. CRISPR Correction of Duchenne Muscular Dystrophy.
    Min YL; Bassel-Duby R; Olson EN
    Annu Rev Med; 2019 Jan; 70():239-255. PubMed ID: 30379597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR/Cas correction of muscular dystrophies.
    Zhang Y; Nishiyama T; Olson EN; Bassel-Duby R
    Exp Cell Res; 2021 Nov; 408(1):112844. PubMed ID: 34571006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gene Editing for the Treatment of Hypercholesterolemia.
    Hoekstra M; Van Eck M
    Curr Atheroscler Rep; 2024 May; 26(5):139-146. PubMed ID: 38498115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiplex CRISPR/Cas9-based genome editing for correction of dystrophin mutations that cause Duchenne muscular dystrophy.
    Ousterout DG; Kabadi AM; Thakore PI; Majoros WH; Reddy TE; Gersbach CA
    Nat Commun; 2015 Feb; 6():6244. PubMed ID: 25692716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cardiac Myoediting Attenuates Cardiac Abnormalities in Human and Mouse Models of Duchenne Muscular Dystrophy.
    Atmanli A; Chai AC; Cui M; Wang Z; Nishiyama T; Bassel-Duby R; Olson EN
    Circ Res; 2021 Sep; 129(6):602-616. PubMed ID: 34372664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Single CRISPR-Cas9 Deletion Strategy that Targets the Majority of DMD Patients Restores Dystrophin Function in hiPSC-Derived Muscle Cells.
    Young CS; Hicks MR; Ermolova NV; Nakano H; Jan M; Younesi S; Karumbayaram S; Kumagai-Cresse C; Wang D; Zack JA; Kohn DB; Nakano A; Nelson SF; Miceli MC; Spencer MJ; Pyle AD
    Cell Stem Cell; 2016 Apr; 18(4):533-40. PubMed ID: 26877224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of CRISPR-Cas system in gene therapy: Pre-clinical progress in animal model.
    Guan L; Han Y; Zhu S; Lin J
    DNA Repair (Amst); 2016 Oct; 46():1-8. PubMed ID: 27519625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cautious welcome for gene editing of Duchenne muscular dystrophy in animal model.
    Hawkes N
    BMJ; 2016 Jan; 351():h7033. PubMed ID: 26729900
    [No Abstract]   [Full Text] [Related]  

  • 12. CRISPR editing as a therapeutic strategy for Duchenne muscular dystrophy-anti-Cas9 immune response casts its shadow over safety and efficacy.
    Dowling JJ
    Gene Ther; 2022 Nov; 29(10-11):575-577. PubMed ID: 35194186
    [No Abstract]   [Full Text] [Related]  

  • 13. Gene Editing With CRISPR/Cas9 RNA-Directed Nuclease.
    Doetschman T; Georgieva T
    Circ Res; 2017 Mar; 120(5):876-894. PubMed ID: 28254804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuromuscular disease: CRISPR/Cas9 gene-editing platform corrects mutations associated with Duchenne muscular dystrophy.
    Wood H
    Nat Rev Neurol; 2015 Apr; 11(4):184. PubMed ID: 25752950
    [No Abstract]   [Full Text] [Related]  

  • 15. PCSK9 inhibitor therapy in homozygous familial defective apolipoprotein B-100 due to APOB R3500Q: A case report.
    Andersen L; Davis T; Testa H; Andersen RL
    J Clin Lipidol; 2017; 11(6):1471-1474. PubMed ID: 28988723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduced Blood Lipid Levels With In Vivo CRISPR-Cas9 Base Editing of ANGPTL3.
    Chadwick AC; Evitt NH; Lv W; Musunuru K
    Circulation; 2018 Feb; 137(9):975-977. PubMed ID: 29483174
    [No Abstract]   [Full Text] [Related]  

  • 17. Adeno-Associated Virus-Mediated Delivery of CRISPR for Cardiac Gene Editing in Mice.
    Xu L; Gao Y; Lau YS; Han R
    J Vis Exp; 2018 Aug; (138):. PubMed ID: 30124643
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuromuscular disease: Genome editing shows promise in an in vivo model of Duchenne muscular dystrophy.
    Wood H
    Nat Rev Neurol; 2016 Feb; 12(2):63. PubMed ID: 26782331
    [No Abstract]   [Full Text] [Related]  

  • 19. Gene Editing for Duchenne Muscular Dystrophy Using the CRISPR/Cas9 Technology: The Importance of Fine-tuning the Approach.
    Tremblay JP; Iyombe-Engembe JP; DuchĂȘne B; Ouellet DL
    Mol Ther; 2016 Nov; 24(11):1888-1889. PubMed ID: 27916992
    [No Abstract]   [Full Text] [Related]  

  • 20. The promise and challenge of therapeutic genome editing.
    Doudna JA
    Nature; 2020 Feb; 578(7794):229-236. PubMed ID: 32051598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.