These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 29517391)

  • 1. Evolution of GAPDH as a druggable target of tumor glycolysis?
    Ganapathy-Kanniappan S
    Expert Opin Ther Targets; 2018 Apr; 22(4):295-298. PubMed ID: 29517391
    [No Abstract]   [Full Text] [Related]  

  • 2. Deregulation of glycolysis in cancer: glyceraldehyde-3-phosphate dehydrogenase as a therapeutic target.
    Krasnov GS; Dmitriev AA; Snezhkina AV; Kudryavtseva AV
    Expert Opin Ther Targets; 2013 Jun; 17(6):681-93. PubMed ID: 23445303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discovery of novel glyceraldehyde-3-phosphate dehydrogenase inhibitor via docking-based virtual screening.
    Li T; Tan X; Yang R; Miao Y; Zhang M; Xi Y; Guo R; Zheng M; Li B
    Bioorg Chem; 2020 Mar; 96():103620. PubMed ID: 32028064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two glyceraldehyde-3-phosphate dehydrogenase isozymes from the koningic acid (heptelidic acid) producer Trichoderma koningii.
    Sakai K; Hasumi K; Endo A
    Eur J Biochem; 1990 Oct; 193(1):195-202. PubMed ID: 2226438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Specific inhibition of glyceraldehyde-3-phosphate dehydrogenase by koningic acid (heptelidic acid).
    Endo A; Hasumi K; Sakai K; Kanbe T
    J Antibiot (Tokyo); 1985 Jul; 38(7):920-5. PubMed ID: 4030504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Predictive Model for Selective Targeting of the Warburg Effect through GAPDH Inhibition with a Natural Product.
    Liberti MV; Dai Z; Wardell SE; Baccile JA; Liu X; Gao X; Baldi R; Mehrmohamadi M; Johnson MO; Madhukar NS; Shestov AA; Chio IIC; Elemento O; Rathmell JC; Schroeder FC; McDonnell DP; Locasale JW
    Cell Metab; 2017 Oct; 26(4):648-659.e8. PubMed ID: 28918937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitroxyl inhibits breast tumor growth and angiogenesis.
    Norris AJ; Sartippour MR; Lu M; Park T; Rao JY; Jackson MI; Fukuto JM; Brooks MN
    Int J Cancer; 2008 Apr; 122(8):1905-10. PubMed ID: 18076071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acyl phosphatase activity of NO-inhibited glyceraldehyde-3-phosphate dehydrogenase (GAPDH): a potential mechanism for uncoupling glycolysis from ATP generation in NO-producing cells.
    Albina JE; Mastrofrancesco B; Reichner JS
    Biochem J; 1999 Jul; 341 ( Pt 1)(Pt 1):5-9. PubMed ID: 10377238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of yeast glycolysis by nitroxyl (HNO): mechanism of HNO toxicity and implications to HNO biology.
    Lopez BE; Rodriguez CE; Pribadi M; Cook NM; Shinyashiki M; Fukuto JM
    Arch Biochem Biophys; 2005 Oct; 442(1):140-8. PubMed ID: 16139238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase works as an arsenate reductase in human red blood cells and rat liver cytosol.
    Gregus Z; NĂ©meti B
    Toxicol Sci; 2005 Jun; 85(2):859-69. PubMed ID: 15788719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel insight into the role of GAPDH playing in tumor.
    Guo C; Liu S; Sun MZ
    Clin Transl Oncol; 2013 Mar; 15(3):167-72. PubMed ID: 22911551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Koningic acid (heptelidic acid) inhibition of glyceraldehyde-3-phosphate dehydrogenases from various sources.
    Kato M; Sakai K; Endo A
    Biochim Biophys Acta; 1992 Mar; 1120(1):113-6. PubMed ID: 1554737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Covalent inhibitors of GAPDH: From unspecific warheads to selective compounds.
    Galbiati A; Zana A; Conti P
    Eur J Med Chem; 2020 Dec; 207():112740. PubMed ID: 32898762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determining the quantitative relationship between glycolysis and GAPDH in cancer cells exhibiting the Warburg effect.
    Zhu X; Jin C; Pan Q; Hu X
    J Biol Chem; 2021; 296():100369. PubMed ID: 33545174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. S100B impairs glycolysis via enhanced poly(ADP-ribosyl)ation of glyceraldehyde-3-phosphate dehydrogenase in rodent muscle cells.
    Hosokawa K; Hamada Y; Fujiya A; Murase M; Maekawa R; Niwa Y; Izumoto T; Seino Y; Tsunekawa S; Arima H
    Am J Physiol Endocrinol Metab; 2017 Jun; 312(6):E471-E481. PubMed ID: 28174179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glyceraldehyde-3-phosphate dehydrogenase aggregation inhibitor peptide: A potential therapeutic strategy against oxidative stress-induced cell death.
    Itakura M; Nakajima H; Semi Y; Higashida S; Azuma YT; Takeuchi T
    Biochem Biophys Res Commun; 2015 Nov; 467(2):373-6. PubMed ID: 26431872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of sesquiterpene lactones, eupatoriopicrin and hydroxyisonobilin, on the glycolytic metabolism of human lymphocytes.
    Baer W; Chmiel J; Gnojkowski J; Klimek D
    Int J Clin Pharmacol Ther Toxicol; 1983 Jan; 21(1):41-6. PubMed ID: 6832866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anticancer efficacy of the metabolic blocker 3-bromopyruvate: specific molecular targeting.
    Ganapathy-Kanniappan S; Kunjithapatham R; Geschwind JF
    Anticancer Res; 2013 Jan; 33(1):13-20. PubMed ID: 23267123
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational study of glyceraldehyde-3-phosphate dehydrogenase of Entamoeba histolytica: implications for structure-based drug design.
    Kundu S; Roy D
    J Biomol Struct Dyn; 2007 Aug; 25(1):25-33. PubMed ID: 17676935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GAPDH and intermediary metabolism.
    Seidler NW
    Adv Exp Med Biol; 2013; 985():37-59. PubMed ID: 22851446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.