These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Complex effects of laminopathy mutations on nuclear structure and function. Ho R; Hegele RA Clin Genet; 2019 Feb; 95(2):199-209. PubMed ID: 30280378 [TBL] [Abstract][Full Text] [Related]
5. Distinct features of lamin A-interacting chromatin domains mapped by ChIP-sequencing from sonicated or micrococcal nuclease-digested chromatin. Lund EG; Duband-Goulet I; Oldenburg A; Buendia B; Collas P Nucleus; 2015; 6(1):30-9. PubMed ID: 25602132 [TBL] [Abstract][Full Text] [Related]
6. Myopathic lamin mutations impair nuclear stability in cells and tissue and disrupt nucleo-cytoskeletal coupling. Zwerger M; Jaalouk DE; Lombardi ML; Isermann P; Mauermann M; Dialynas G; Herrmann H; Wallrath LL; Lammerding J Hum Mol Genet; 2013 Jun; 22(12):2335-49. PubMed ID: 23427149 [TBL] [Abstract][Full Text] [Related]
7. InterLINCing Chromatin Organization and Mechanobiology in Laminopathies. Shah PP; Santini GT; Shen KM; Jain R Curr Cardiol Rep; 2023 May; 25(5):307-314. PubMed ID: 37052760 [TBL] [Abstract][Full Text] [Related]
8. Directed targeting of chromatin to the nuclear lamina is mediated by chromatin state and A-type lamins. Harr JC; Luperchio TR; Wong X; Cohen E; Wheelan SJ; Reddy KL J Cell Biol; 2015 Jan; 208(1):33-52. PubMed ID: 25559185 [TBL] [Abstract][Full Text] [Related]
11. Lamin C is required to establish genome organization after mitosis. Wong X; Hoskins VE; Melendez-Perez AJ; Harr JC; Gordon M; Reddy KL Genome Biol; 2021 Nov; 22(1):305. PubMed ID: 34775987 [TBL] [Abstract][Full Text] [Related]
12. Laminopathies: what can humans learn from fruit flies. Pałka M; Tomczak A; Grabowska K; Machowska M; Piekarowicz K; Rzepecka D; Rzepecki R Cell Mol Biol Lett; 2018; 23():32. PubMed ID: 30002683 [TBL] [Abstract][Full Text] [Related]
13. Nuclear Lamins: Thin Filaments with Major Functions. de Leeuw R; Gruenbaum Y; Medalia O Trends Cell Biol; 2018 Jan; 28(1):34-45. PubMed ID: 28893461 [TBL] [Abstract][Full Text] [Related]
14. Mapping of protein- and chromatin-interactions at the nuclear lamina. Kubben N; Voncken JW; Misteli T Nucleus; 2010; 1(6):460-71. PubMed ID: 21327087 [TBL] [Abstract][Full Text] [Related]
15. Lamin A, Chromatin and FPLD2: Not Just a Peripheral Briand N; Cahyani I; Madsen-Østerbye J; Paulsen J; Rønningen T; Sørensen AL; Collas P Front Cell Dev Biol; 2018; 6():73. PubMed ID: 30057899 [TBL] [Abstract][Full Text] [Related]
17. Interplay of lamin A and lamin B LADs on the radial positioning of chromatin. Forsberg F; Brunet A; Ali TML; Collas P Nucleus; 2019 Dec; 10(1):7-20. PubMed ID: 30663495 [TBL] [Abstract][Full Text] [Related]
18. Chrom3D: three-dimensional genome modeling from Hi-C and nuclear lamin-genome contacts. Paulsen J; Sekelja M; Oldenburg AR; Barateau A; Briand N; Delbarre E; Shah A; Sørensen AL; Vigouroux C; Buendia B; Collas P Genome Biol; 2017 Jan; 18(1):21. PubMed ID: 28137286 [TBL] [Abstract][Full Text] [Related]
19. Depletion of lamins B1 and B2 promotes chromatin mobility and induces differential gene expression by a mesoscale-motion-dependent mechanism. Pujadas Liwag EM; Wei X; Acosta N; Carter LM; Yang J; Almassalha LM; Jain S; Daneshkhah A; Rao SSP; Seker-Polat F; MacQuarrie KL; Ibarra J; Agrawal V; Aiden EL; Kanemaki MT; Backman V; Adli M Genome Biol; 2024 Mar; 25(1):77. PubMed ID: 38519987 [TBL] [Abstract][Full Text] [Related]
20. Nuclear lamin phosphorylation: an emerging role in gene regulation and pathogenesis of laminopathies. Liu SY; Ikegami K Nucleus; 2020 Dec; 11(1):299-314. PubMed ID: 33030403 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]