These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
294 related articles for article (PubMed ID: 29517486)
1. InGaAs/InP quantum wires grown on silicon with adjustable emission wavelength at telecom bands. Han Y; Li Q; Ng KW; Zhu S; Lau KM Nanotechnology; 2018 Jun; 29(22):225601. PubMed ID: 29517486 [TBL] [Abstract][Full Text] [Related]
2. Telecom InP/InGaAs nanolaser array directly grown on (001) silicon-on-insulator. Han Y; Ng WK; Xue Y; Li Q; Wong KS; Lau KM Opt Lett; 2019 Feb; 44(4):767-770. PubMed ID: 30767982 [TBL] [Abstract][Full Text] [Related]
3. InP-In Fonseka HA; Ameruddin AS; Caroff P; Tedeschi D; De Luca M; Mura F; Guo Y; Lysevych M; Wang F; Tan HH; Polimeni A; Jagadish C Nanoscale; 2017 Sep; 9(36):13554-13562. PubMed ID: 28872181 [TBL] [Abstract][Full Text] [Related]
4. Site-Controlled Growth of Monolithic InGaAs/InP Quantum Well Nanopillar Lasers on Silicon. Schuster F; Kapraun J; Malheiros-Silveira GN; Deshpande S; Chang-Hasnain CJ Nano Lett; 2017 Apr; 17(4):2697-2702. PubMed ID: 28328224 [TBL] [Abstract][Full Text] [Related]
5. Radial Growth Evolution of InGaAs/InP Multi-Quantum-Well Nanowires Grown by Selective-Area Metal Organic Vapor-Phase Epitaxy. Yang I; Zhang X; Zheng C; Gao Q; Li Z; Li L; Lockrey MN; Nguyen H; Caroff P; Etheridge J; Tan HH; Jagadish C; Wong-Leung J; Fu L ACS Nano; 2018 Oct; 12(10):10374-10382. PubMed ID: 30281281 [TBL] [Abstract][Full Text] [Related]
6. InGaAs/InP multi-quantum-well nanowires with a lower optical leakage loss on v-groove-patterned SOI substrates. Li Y; Wang M; Zhou X; Wang P; Yang W; Meng F; Luo G; Yu H; Pan J; Wang W Opt Express; 2019 Jan; 27(2):494-503. PubMed ID: 30696134 [TBL] [Abstract][Full Text] [Related]
7. Multiwavelength Single Nanowire InGaAs/InP Quantum Well Light-Emitting Diodes. Yang I; Li Z; Wong-Leung J; Zhu Y; Li Z; Gagrani N; Li L; Lockrey MN; Nguyen H; Lu Y; Tan HH; Jagadish C; Fu L Nano Lett; 2019 Jun; 19(6):3821-3829. PubMed ID: 31141386 [TBL] [Abstract][Full Text] [Related]
8. InGaAs quantum dots grown by molecular beam epitaxy for light emission on Si substrates. Bru-Chevallier C; El Akra A; Pelloux-Gervais D; Dumont H; Canut B; Chauvin N; Regreny P; Gendry M; Patriarche G; Jancu JM; Even J; Noe P; Calvo V; Salem B J Nanosci Nanotechnol; 2011 Oct; 11(10):9153-9. PubMed ID: 22400316 [TBL] [Abstract][Full Text] [Related]
9. Room-temperature electrically-pumped 1.5 μm InGaAs/InAlGaAs laser monolithically grown on on-axis (001) Si. Zhu S; Shi B; Li Q; Lau KM Opt Express; 2018 May; 26(11):14514-14523. PubMed ID: 29877487 [TBL] [Abstract][Full Text] [Related]
10. Light-trapping for room temperature Bose-Einstein condensation in InGaAs quantum wells. Vasudev P; Jiang JH; John S Opt Express; 2016 Jun; 24(13):14010-35. PubMed ID: 27410564 [TBL] [Abstract][Full Text] [Related]
11. Light emission rate enhancement from InP MQW by plasmon nano-antenna arrays. Arbel D; Berkovitch N; Nevet A; Peer A; Cohen S; Ritter D; Orenstein M Opt Express; 2011 May; 19(10):9807-13. PubMed ID: 21643237 [TBL] [Abstract][Full Text] [Related]
12. Telecom-band lasing in single InP/InAs heterostructure nanowires at room temperature. Zhang G; Takiguchi M; Tateno K; Tawara T; Notomi M; Gotoh H Sci Adv; 2019 Feb; 5(2):eaat8896. PubMed ID: 30801006 [TBL] [Abstract][Full Text] [Related]
13. Low-Temperature Growth of InGaAs Quantum Wells Using Migration-Enhanced Epitaxy. Liu L; Chen R; Kong C; Deng Z; Liu G; Yan J; Qin L; Du H; Song S; Zhang X; Wang W Materials (Basel); 2024 Feb; 17(4):. PubMed ID: 38399096 [TBL] [Abstract][Full Text] [Related]
14. Self-Seeded MOCVD Growth and Dramatically Enhanced Photoluminescence of InGaAs/InP Core-Shell Nanowires. Ji X; Chen X; Yang X; Zhang X; Shao J; Yang T Nanoscale Res Lett; 2018 Sep; 13(1):269. PubMed ID: 30187239 [TBL] [Abstract][Full Text] [Related]
15. Submicron-Size Emitters of the 1.2-1.55 μm Spectral Range Based on InP/InAsP/InP Nanostructures Integrated into Si Substrate. Melnichenko I; Moiseev E; Kryzhanovskaya N; Makhov I; Nadtochiy A; Kalyuznyy N; Kondratev V; Zhukov A Nanomaterials (Basel); 2022 Nov; 12(23):. PubMed ID: 36500837 [TBL] [Abstract][Full Text] [Related]
16. Room-temperature Fabry-Perot resonances in suspended InGaAs/InP quantum-well nanopillars on a silicon substrate. Malheiros-Silveira GN; Bhattacharya I; Deshpande SV; Skuridina D; Lu F; Chang-Hasnain CJ Opt Express; 2017 Jan; 25(1):271-277. PubMed ID: 28085820 [TBL] [Abstract][Full Text] [Related]
17. InAs quantum dot in a needlelike tapered InP nanowire: a telecom band single photon source monolithically grown on silicon. Jaffal A; Redjem W; Regreny P; Nguyen HS; Cueff S; Letartre X; Patriarche G; Rousseau E; Cassabois G; Gendry M; Chauvin N Nanoscale; 2019 Nov; 11(45):21847-21855. PubMed ID: 31696191 [TBL] [Abstract][Full Text] [Related]
18. Tailoring the optical characteristics of microsized InP nanoneedles directly grown on silicon. Li K; Sun H; Ren F; Ng KW; Tran TT; Chen R; Chang-Hasnain CJ Nano Lett; 2014 Jan; 14(1):183-90. PubMed ID: 24299042 [TBL] [Abstract][Full Text] [Related]
19. Influence of substrate misorientation on the photoluminescence and structural properties of InGaAs/GaAsP multiple quantum wells. Dong H; Sun J; Ma S; Liang J; Lu T; Liu X; Xu B Nanoscale; 2016 Mar; 8(11):6043-56. PubMed ID: 26926840 [TBL] [Abstract][Full Text] [Related]
20. Wurtzite InP/InAs/InP core-shell nanowires emitting at telecommunication wavelengths on Si substrate. Alouane MH; Anufriev R; Chauvin N; Khmissi H; Naji K; Ilahi B; Maaref H; Patriarche G; Gendry M; Bru-Chevallier C Nanotechnology; 2011 Oct; 22(40):405702. PubMed ID: 21911925 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]